1
|
Hedayati Marzbali M, Hakeem IG, Ngo T, Balu R, Jena MK, Vuppaladadiyam A, Sharma A, Choudhury NR, Batstone DJ, Shah K. A critical review on emerging industrial applications of chars from thermal treatment of biosolids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122341. [PMID: 39236613 DOI: 10.1016/j.jenvman.2024.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Thermochemical treatment is rapidly emerging as an alternative method for the management of stabilised sewage sludges (biosolids) to effectively reduce waste volume, degrade contaminants, and generate valuable products, particularly biochar and hydrochar. Biosolids-derived char has a relatively high concentration of heavy metals compared with agricultural chars but is still applied to land due to its beneficial properties and ability to retain metals. However, non-agricultural applications can provide additional economic and environmental benefits, promote sustainability and support a circular economy. This review identifies extensive non-agricultural opportunity for biosolids biochar, including adsorption, catalysis, energy storage systems, biological process enhancement, and as additives for rubber compounding and construction. Biosolids chars have received limited attention vs agricultural char, and we draw on both areas of literature, as well as evaluating differences between agricultural and biosolids chars. A key opportunity for biosolids biochar in comparison with other materials and agricultural chars is its sustainable and low-cost nature, relatively high metals content, improving catalyst properties, and ability to modify in various stages to tune it to specific applications. The specific opportunities for hydrochar have only received limited attention. Research needs to include better understanding of the benefits and limitations for specific applications, as well as adjacent drivers, including society, regulation, and market and economics.
Collapse
Affiliation(s)
- Mojtaba Hedayati Marzbali
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia.
| | - Ibrahim Gbolahan Hakeem
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Tien Ngo
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia; School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Rajkamal Balu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Industrial Transformation Research Hub for Transformation of Reclaimed Waste into Engineered Materials and Solutions for a Circular Economy (TREMS), RMIT University, Melbourne, Victoria, 3000, Australia
| | - Manoj Kumar Jena
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Arun Vuppaladadiyam
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Abhishek Sharma
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia; Department of Chemical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Industrial Transformation Research Hub for Transformation of Reclaimed Waste into Engineered Materials and Solutions for a Circular Economy (TREMS), RMIT University, Melbourne, Victoria, 3000, Australia
| | - Damien J Batstone
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Kalpit Shah
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
2
|
Ribarova I, Vasilaki V, Katsou E. Review of linear and circular approaches to on-site domestic wastewater treatment: Analysis of research achievements, trends and distance to target. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121951. [PMID: 39079496 DOI: 10.1016/j.jenvman.2024.121951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
This comprehensive review critically assesses traditional and emerging technologies for domestic wastewater treatment and reuse, focusing on the transition from conventional centralised systems to innovative decentralised approaches. Through an extensive literature search on domestic wastewater systems serving a population equivalent of less than or equal to 10, the study juxtaposes linear and circular methods and highlights their impact on urban water management and the environment. The papers reviewed were classified into five categories: Environmental studies, economic studies, social studies, technological studies, and reviews and policy papers. The analysis was carried out separately for linear and circular approaches within each category. In addition, the maturity of the technology (lab/pilot or full-scale application) was taken into account in the analysis. The research landscape is shown to be evolving towards circular methods that promise sustainability through resource recovery, despite the dominance of linear perspectives. The lack of clear progress in decentralised technologies, the scarcity of circularity assessments and the challenges of urban integration are highlighted. Operational reliability, regulatory compliance and policy support are identified as key barriers to the adoption of decentralised systems. While conventional pollutants and their environmental impacts are well addressed for linear systems, the study of emerging pollutants is in its infancy. Conclusions on the impact of these hazardous pollutants are tentative and cautious. Social and economic studies are mainly based on virtual scenarios, which are useful research tools for achieving sustainability goals. The conceptual frameworks for assessing the social dimension need further refinement to be effective. The paper argues for a balanced integration of centralisation and decentralisation, proposing a dual strategy that emphasizes the development of interoperable technologies. It calls for further research, policy development and widespread implementation to promote decentralised solutions in urban water management and pave the way for sustainable urban ecosystems.
Collapse
Affiliation(s)
- Irina Ribarova
- University of Architecture, Civil Engineering and Geodezy, 1 Chr. Smirnensku Blvd., 1046, Sofia, Centre of Competence "Clean&Circle", Bulgaria.
| | - Vasileia Vasilaki
- Department of Civil and Environmental Engineering, Imperial College London, Skempton Building, South Kensington, London, SW7 2AZ, United Kingdom.
| | - Evina Katsou
- Department of Civil and Environmental Engineering, Imperial College London, Skempton Building, South Kensington, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
3
|
Moreno Cruz CF, Monroy Hermosillo O, Thalasso F, Tzintzun Camacho O, Ramírez Vives F. Toilet effluent separation and brown water treatment: Survey and initial feasibility testing in Mexico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171281. [PMID: 38417526 DOI: 10.1016/j.scitotenv.2024.171281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/10/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Separation of domestic effluents at the source and the utilization of low-flush toilets offer alternative approaches for developing efficient wastewater treatment systems while promoting energy generation through anaerobic digestion. This study focused on assessing toilet usage in Mexico and exploring the potential of anaerobic co-digestion of brown water (feces) and toilet paper as influential factors in wastewater treatment systems. A survey was conducted on a representative sample of Mexicans to gather information on toilet usage frequency, toilet paper use and disposal practices, as well as the type and quantity of commercial disinfectants and pharmaceutical compounds they use or consume. The survey revealed that per capita toilet paper consumption is 2.9 kg annually, that 58 % of respondents do not dispose used paper in the toilet, and that about 47 % use two to three cleaning and disinfection products. Notably, 97 % of the sampled Mexican population expressed a willingness to transition to more eco-friendly toilet options. Subsequently, in a second step, the anaerobic co-digestion of brown water with toilet paper was evaluated, demonstrating a relatively high production of volatile fatty acids but low methane production. This suggests an efficient hydrolysis/acidogenesis process coupled with restrained methanogenesis, probably due to pH decrease caused by acidogenesis. This study underscores that toilet paper and brown water are potential suitable substrates for anaerobic co-digestion. Furthermore, it sheds light on the behaviors of Mexican society regarding bathroom use and cleaning, contributing to the establishment of foundations for wastewater treatment systems with effluent separation at the source.
Collapse
Affiliation(s)
- Carlos Francisco Moreno Cruz
- Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, Ciudad de México C.P. 09340, Mexico; Universidad Autónoma de Baja California, Instituto de Ciencias Agrícolas, Carretera a Delta s/n, C.P. 21705, Ejido Nuevo León, Mexicali, Baja California, Mexico.
| | - Oscar Monroy Hermosillo
- Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, Ciudad de México C.P. 09340, Mexico
| | - Frederic Thalasso
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, Mexico
| | - Olivia Tzintzun Camacho
- Universidad Autónoma de Baja California, Instituto de Ciencias Agrícolas, Carretera a Delta s/n, C.P. 21705, Ejido Nuevo León, Mexicali, Baja California, Mexico
| | - Florina Ramírez Vives
- Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, Ciudad de México C.P. 09340, Mexico
| |
Collapse
|
4
|
de Albuquerque FP, Dastyar W, Mirsoleimani Azizi SM, Zakaria BS, Kumar A, Dhar BR. Carbon cloth amendment for boosting high-solids anaerobic digestion with percolate recirculation: Spatial patterns of microbial communities. CHEMOSPHERE 2022; 307:135606. [PMID: 35810875 DOI: 10.1016/j.chemosphere.2022.135606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The addition of conductive materials in anaerobic digestion (AD) is a promising method for boosting biomethane recovery from organic waste. However, conductive additives have rarely been investigated for the high-solids anaerobic digestion (HSAD). Here, the impact of adding carbon cloth in the solid phase of an HSAD system with percolate recirculation was investigated. Furthermore, spatial patterns of microbial communities in suspended biomass, percolate, and carbon cloth attached biofilm were assessed. Carbon cloth increased biomethane yield from source-separated organics (SSO) by 20% more than the unamended control by shortening the lag phase (by 15%) and marginally improving the methanogenesis rate constant (by ∼8%) under a batch operation for 50 days. Microbial community analysis demonstrated higher relative abundances of the archaeal population in the carbon cloth amended reactor than in unamended control (12%-21% vs. 5%-15%). Compared to percolate and suspension, carbon cloth attached microbial community showed higher enrichment of known electroactive Pseudomonas species along with Methanosarcina and Methanobacterium species, indicating the possibility of DIET-based syntrophy among these species.
Collapse
Affiliation(s)
| | - Wafa Dastyar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | | | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Amit Kumar
- Mechanical Engineering, University of Alberta, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
5
|
Liu H, Xu Y, Li L, Yuan S, Geng H, Tang Y, Dai X. A novel green composite conductive material enhancing anaerobic digestion of waste activated sludge via improving electron transfer and metabolic activity. WATER RESEARCH 2022; 220:118687. [PMID: 35661512 DOI: 10.1016/j.watres.2022.118687] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) of waste activated sludge (WAS) is usually limited by the low generation efficiency of methane. The addition of composite conductive materials (CMs) is a promising strategy to enhance AD performance. In this study, a new green magnetic-straw-based biochar (MSBC) was synthesised by a simple ball-milling/carbonisation method, and its effects on AD performance of sludge were investigated. Experimental results showed that the as-synthesised MSBC had an intrinsic graphene-oxide-like structure, with Fe species serving as electroactive sites; these characteristics translate into a high electron transfer (ET) capability. After adding MSBC, the volatile fatty acid production and methane yield were significantly increased by 14.13% and 45.36%, respectively. Analysis of the changes in the ET system activities, hydrogenase activities, Cyt-C concentrations and the electron transfer capacity of the sludge sample with and without the MSBC revealed that the MSBC enhanced intracellular ET and changed the extracellular ET pathway from indirect interspecies hydrogen transfer to direct interspecies electron transfer (DIET), which would be responsible for increasing methane production and proportion in the biogas. However, further analyses of key enzyme activities and the microbial community indicated that the MSBC reinforces the methanogenesis pathway by creating a favourable environment (i.e., by enhancing hydrolysis-acidification and DIET-based CO2 reduction) for acetoclastic methanogens. These findings, however, are expected to provide an important reference for developing CMs application in AD.
Collapse
Affiliation(s)
- Haoyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanfei Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Tan XB, Wang L, Wan XP, Zhou XN, Yang LB, Zhang WW, Zhao XC. Growth of Chlorella pyrenoidosa on different septic tank effluents from rural areas for lipids production and pollutants removal. BIORESOURCE TECHNOLOGY 2021; 339:125502. [PMID: 34304097 DOI: 10.1016/j.biortech.2021.125502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Septic tank effluent from rural areas was an ideal medium for cultivating oleaginous microalgae. However, the characteristics of septic tank effluents varied greatly due to the different incoming wastewater, and bring uncertain risks for algal growth. In this study, an oleaginous microalgae was cultivated in septic effluents from different mixed wastewater. The results showed that the effluent from pure toilet wastewater was the best medium to achieve the highest biomass yield (1.68 g·L-1) and productivity (154.6 mg·L-1·d-1). In contrast, the discharge of kitchen or laundry wastewater reduced the biomass production by 50.5-79.1%. That caused much lower lipids production in effluents from mixed wastewater regardless of its high lipids content and saturation degree. The results suggest that the discharge of kitchen or laundry wastewater bring risks for biomass and lipids production, and should be separated from the toilet wastewater before entering into septic tank.
Collapse
Affiliation(s)
- Xiao-Bo Tan
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Resources Reuse for Agricultural and Livestock Waste, Hunan Key Laboratory of Water Safety Discharge in Urban and Its Resource Utilization, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China
| | - Lu Wang
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Resources Reuse for Agricultural and Livestock Waste, Hunan Key Laboratory of Water Safety Discharge in Urban and Its Resource Utilization, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China
| | - Xi-Ping Wan
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Resources Reuse for Agricultural and Livestock Waste, Hunan Key Laboratory of Water Safety Discharge in Urban and Its Resource Utilization, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China
| | - Xiao-Ni Zhou
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Resources Reuse for Agricultural and Livestock Waste, Hunan Key Laboratory of Water Safety Discharge in Urban and Its Resource Utilization, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China
| | - Li-Bin Yang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wen-Wen Zhang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xian-Chao Zhao
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Resources Reuse for Agricultural and Livestock Waste, Hunan Key Laboratory of Water Safety Discharge in Urban and Its Resource Utilization, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China.
| |
Collapse
|