1
|
Geng M, Li T, Qu F, Gao S, Tian J. Insights into the impact of feeding with polymers on aerobic granular sludge development and stability: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2025; 426:132368. [PMID: 40056959 DOI: 10.1016/j.biortech.2025.132368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/24/2025]
Abstract
In this study, the effect of feeding with polymers on aerobic granular sludge (AGS) formation and stability was comprehensively investigated during 235-day operation. Results showed that the granules developed in starch-fed reactor possessed fluffy surface with overgrowth of granule size, and 60 % flocs were produced in protein-fed reactor, identifying feeding with polymers deteriorated AGS development and stability. Moreover, substrate conversion analysis revealed that ∼ 14 % of the consumed COD was recovered as storage of poly-hydroxybutyrate in polymer-fed reactor, much lower than 63.7 % in acetate-fed reactor. Extended Derjaguin-Landau-Verwey-Overbeek theory analysis showed that feeding with polymers increased the cell-cell energy barriers to 307.8 ∼ 388.8 kT, weakening the microbial aggregation capacity in AGS system. Microbial population results found that the relative abundance of Candidatus_Competibacter in protein- and starch-fed reactor displayed 0.01 ∼ 6.1 % and 0.07 ∼ 3.7 %, much lower than 81 % in acetate-fed reactor. Assembly mechanism analysis demonstrated that feeding with polymers enhanced the stochastic selection in shaping microbial assembly.
Collapse
Affiliation(s)
- Mingyue Geng
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ting Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
2
|
Min KJ, Lee E, Lee AH, Kim DY, Park KY. Effect of settling time and organic loading rates on aerobic granulation processes treating high strength wastewater. Heliyon 2024; 10:e36018. [PMID: 39247328 PMCID: PMC11379613 DOI: 10.1016/j.heliyon.2024.e36018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Despite its numerous advantages, the aerobic granular sludge (AGS) process faces several challenges that hinder its widespread implementation. One such challenge is the requirement for high organic load ratios (OLR), which significantly impacts AGS formation and stability, posing a barrier to commercialization. In response to these challenges, this study investigates the granulation and treatment efficacy of the AGS process for treating high-concentration wastewater under various OLR and settling time. Three sequential batch reactors (R1, R2, R3) were operated at OLRs of 0.167, 0.33, and 1 kg COD/m3·day. The study focuses on analyzing key parameters including sludge characteristics, extracellular polymeric substances (EPS) content, PN/PS ratio, and microbial clusters. Results demonstrate that reducing settling time from 90 to 30 min enhances sludge settleability, resulting in a maximum 50.8 % decrease in SVI30 (from 98.1 to 122.8 mL/g to 51.9-81.3 mL/g), thereby facilitating the selection of beneficial microorganisms during granulation. Particularly, at R2, the PN/PS ratio was 4.3, and EPS content increased by 1.52-fold, leading to a 1.41-fold increase in sludge attachment. This observation suggests a progressive maturation of AGS. Additionally, analysis of microbial diversity and cluster composition highlights the influence of OLR variations on the ratios of Proteobacteria and Bacteroidetes. These findings emphasize the significant impact of SBR operational strategies on AGS process performance and biological stability, offering valuable insights for the efficient operation of future high-concentration wastewater treatment processes.
Collapse
Affiliation(s)
- Kyung Jin Min
- Department of Tech Center for Research Facilities, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Eunyoung Lee
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Ah Hyun Lee
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Do Yeon Kim
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Ki Young Park
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| |
Collapse
|
3
|
Liu C, Han X, Li N, Jin Y, Yu J. Ultra-rapid development of 'solid' aerobic granular sludge by stable transition/filling of inoculated 'hollow' mycelial pellets in hypersaline wastewater. BIORESOURCE TECHNOLOGY 2024; 406:131006. [PMID: 38889867 DOI: 10.1016/j.biortech.2024.131006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/20/2024]
Abstract
To overcome the long start-up period in cultivating aerobic granular sludge (AGS) under hypersaline environment, mycelial pellets (MPs) of halotolerant fungus Cladosporium tenuissimum NCSL-XY8 were inoculated to try to realize the ultra-rapid development of salt-tolerant AGS by stable transition of 'hollow' MPs into 'solid' AGS without apparent fragmentation. The granules directly met the standard of AGS after inoculating MPs (Day 0), and it basically satisfied relatively strict standards of AGS (SVI30 < 50 mL/g, D50 > 300 μm, D10 > 200 μm and SVI30/SVI5 > 0.9) under anaerobic/aerobic mode during whole cultivation processes. Microstructure of the granular cross section clarified that MPs with hollow/loose inner layer transitioned into solid/dense AGS under anaerobic/aerobic mode within 7 days, while formed skin-like floating pieces and unstable double-layer hollow granules under aerobic mode. Organics removal reached relatively stable within 13 days under anaerobic/aerobic mode, 6 days faster than aerobic mode. This study provided a strategy for ultra-rapid and stable development of AGS, which showed the shortest granulation period in various AGS-cultivation strategies.
Collapse
Affiliation(s)
- Changshen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Ningning Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianguo Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Wang J, Ran B, Peng Y, An Q, Zhao B. Evaluation of aerobic granulation performance bioaugmented with the auto-aggregating bacterium Pseudomonas stutzeri strain XL-2 with heterotrophic nitrification-aerobic denitrification capacity. BIORESOURCE TECHNOLOGY 2024; 403:130869. [PMID: 38777236 DOI: 10.1016/j.biortech.2024.130869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
In this study, the possibility of an auto-aggregating bacterium Pseudomonas strain XL-2 with heterotrophic nitrification-aerobic denitrification capacity for improving granulation and nitrogen removal was evaluated. The results showed that the supplementation of strain XL-2 promoted granulation, making R1 (experimental group with strain XL-2) dominated by granules at 14 d, which was 12 days earlier than R2 (control group without strain XL-2). This was attributed to the promotion of extracellular polymeric substances (EPS) secretion, particularly proteins by adding strain XL-2, thereby improving the hydrophobicity of sludge and altering the proteins secondary structures to facilitate aggregation. Meanwhile, adding strain XL-2 improved simultaneous nitrification and denitrification efficiency of R1. Microbial community analysis indicated that strain XL-2 successfully proliferated in aerobic granule sludge and might induce the enrichment of genera such as Flavobacterium and Paracoccus that were favorable for EPS secretion and denitrification, jointly promoting granulation and enhancing nitrogen removal efficiency.
Collapse
Affiliation(s)
- Jinyi Wang
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Binbin Ran
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yongxue Peng
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang An
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Bin Zhao
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
5
|
Guo X, Ma X, Niu X, Li Z, Wang Q, Ma Y, Cai S, Li P, Li H. The impacts of biodegradable and non-biodegradable microplastic on the performance and microbial community characterization of aerobic granular sludge. Front Microbiol 2024; 15:1389046. [PMID: 38832118 PMCID: PMC11144868 DOI: 10.3389/fmicb.2024.1389046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Microplastics (MPs), identified as emerging contaminants, have been detected across diverse environmental media. Their enduring presence and small size facilitate the adsorption of organic pollutants and heavy metals, leading to combined pollution effects. MPs also accumulate in the food chain thus pose risks to animals, plants, and human health, garnering significant scholarly attention in recent years. Aerobic granular sludge (AGS) technology emerges as an innovative approach to wastewater treatment. However, the impacts of MPs on the operational efficiency and microbial characteristics of AGS systems has been insufficiently explored. Methods This study investigated the effects of varying concentration (10, 50, and 100 mg/L) of biodegradable MPs (Polylactic Acid, PLA) and non-biodegradable MPs (Polyethylene Terephthalate, PET) on the properties of AGS and explored the underlying mechanisms. Results and discussions It was discovered that low and medium concentration of MPs (10 and 50 mg/L) showed no significant effects on COD removal by AGS, but high concentration (100 mg/L) of MPs markedly diminished the ability to remove COD of AGS, by blocking most of the nutrient transport channels of AGS. However, both PLA and PE promoted the nitrogen and phosphorus removal ability of AGS, and significantly increased the removal efficiency of total inorganic nitrogen (TIN) and total phosphorus (TP) at stages II and III (P < 0.05). High concentration of MPs inhibited the growth of sludge. PET noticeably deteriorate the sedimentation performance of AGS, while 50 mg/L PLA proved to be beneficial to sludge sedimentation at stage II. The addition of MPs promoted the abundance of Candidatus_Competibacter and Acinetobacter in AGS, thereby promoting the phosphorus removal capacity of AGS. Both 50 mg/L PET and 100 mg/L PLA caused large amount of white Thiothrix filamentous bacteria forming on the surface of AGS, leading to deterioration of the sludge settling performance and affecting the normal operation of the reactor. Comparing with PET, AGS proved to be more resistant to PLA, so more attention should be paid to the effect of non-biodegradable MPs on AGS in the future.
Collapse
Affiliation(s)
- Xiaoying Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
- International Joint Laboratory of Environment and Resources of Henan Province, Zhengzhou, China
| | - Xiaohang Ma
- College of Water Resources and Environment Engineering, Nanyang Normal University, Nanyang, China
| | - Xiangyu Niu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
- International Joint Laboratory of Environment and Resources of Henan Province, Zhengzhou, China
| | - Zhe Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
- International Joint Laboratory of Environment and Resources of Henan Province, Zhengzhou, China
| | - Qiong Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
- International Joint Laboratory of Environment and Resources of Henan Province, Zhengzhou, China
| | - Yi Ma
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
- International Joint Laboratory of Environment and Resources of Henan Province, Zhengzhou, China
| | - Shangying Cai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
- International Joint Laboratory of Environment and Resources of Henan Province, Zhengzhou, China
| | - Penghao Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
- International Joint Laboratory of Environment and Resources of Henan Province, Zhengzhou, China
| | - Honglu Li
- Ecological Environment Monitoring and Scientific Research Center, Yellow River Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Zhengzhou, China
| |
Collapse
|
6
|
Gan Y, Gong B, Huang X, Fang F, Peng T, Liu Z. Response of aerobic granular sludge under acute inhibition by polystyrene microplastics: Activity, aggregation performance, and microbial analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123923. [PMID: 38580060 DOI: 10.1016/j.envpol.2024.123923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
In this study, the activity, aggregation performance, microbial community and functional proteins of aerobic granular sludge (AGS) in response to acute inhibition by different concentrations of polystyrene microplastics (PS-MPs) were investigated. As the PS-MPs concentration increased from 0 mg/L to 200 mg/L, the specific nitrogen removal rate and the activity of enzymes were inhibited. The inhibition of specific nitrite reduction rate (SNIRR) and specific nitrate reduction rate (SNRR) was most obvious at the PS-MPs concentration of 100 mg/L, and that of nitrite reductase (NIR) and nitrate reductase (NR) was most obvious at the concentration of 50 mg/L. But the inhibitory effects were mitigated at the concentration of 200 mg/L. The increase of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) indicated that the cells were damaged with the increase of PS-MPs concentration. The content of proteins and polysaccharides in extracellular polymeric substances (EPS) decreased, especially the polysaccharides were more affected. Analysis of zeta potential, hydrophobicity and surface thermodynamics of AGS revealed that addition of PS-MPs was unfavorable for AGS aggregation. It was also found that bacteria genera associated with EPS secretion and nitrogen removal functions were inhibited, while functions associated with cell metabolism, protein synthesis and cell repair were enhanced. This also confirmed that acute inhibition of PS-MPs had a detrimental effect on the nitrogen removal and aggregation performance of AGS. This study can provide theoretical support for the operation of AGS reactors under microplastics impact load.
Collapse
Affiliation(s)
- Yushuang Gan
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Bingrou Gong
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xiaohua Huang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing, 400045, China
| | - Ting Peng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zhiping Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
7
|
Liang W, Yang B, Bin L, Hu Y, Fan D, Chen W, Li P, Tang B. Intensifying the simultaneous removal of nitrogen and phosphorus of an integrated aerobic granular sludge-membrane bioreactor by Acinetobacter junii. BIORESOURCE TECHNOLOGY 2024; 397:130474. [PMID: 38395234 DOI: 10.1016/j.biortech.2024.130474] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
This work aims at intensifying the simultaneous removal of nitrogen and phosphorus of an integrated aerobic granular sludge (AGS) - membrane bioreactor (MBR) by Acinetobacter junii. After acclimation and enrichment in a sequencing batch reactor (SBR), Acinetobacter junii, a kind of denitrifying phosphate accumulating organism (DPAO), was successfully screened in the used SBR. Then it was verified to be capable of effectively enhancing the performance in the simultaneous removal of nitrogen and phosphorus of AGS-MBR. In the system, DPAO (Acinetobacter junii) mainly occurred in AGS, and the highest ratio even reached 22.8%, but its competitive advantages highly depend on the size of AGS. The presented results can cultivate AGS and enrich DPAO simultaneously to improve the removal of nitrogen and phosphorus of an AGS-MBR, which provide an environmentally friendly approach to upgrade traditional wastewater treatment processes.
Collapse
Affiliation(s)
- Weifeng Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Biao Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yadong Hu
- Bio-Form Biotechnology (Guangdong) Co., Ltd., Foshan, 528000, PR China
| | - Depeng Fan
- Bio-Form Biotechnology (Guangdong) Co., Ltd., Foshan, 528000, PR China
| | - Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
8
|
Huang R, Geng M, Gao S, Yin X, Tian J. In-depth insight into improvement of simultaneous nitrification and denitrification/biofouling control by increasing sludge concentration in membrane reactor: performance, microbial assembly and metagenomic analysis. BIORESOURCE TECHNOLOGY 2024; 393:130013. [PMID: 37956947 DOI: 10.1016/j.biortech.2023.130013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Currently, severe membrane fouling and inefficient nitrogen removal were two main issues that hindered the sustainable operation and further application of membrane bioreactor (MBR). This study aimed to simultaneously alleviate membrane fouling and improve nitrogen removal by applying high sludge concentration in MBR. Results showed that high sludge concentration (12000 mg/L) enhanced total nitrogen removal efficiency (78 %) and reduced transmembrane pressure development rate. Microbial community analysis revealed that high sludge concentration enriched functional bacteria associated with nitrogen removal, increased filamentous bacteria fraction in bio-cake and inhibited Thiothrix overgrowth in bulk sludge. From molecular level, the key genes involved in nitrogen metabolism, electron donor/adenosine triphosphate production and amino acid degradation were up-regulated under high sludge concentration. Overall, high sludge concentration improved microbial assembly and functional gene abundance, which not only enhanced nitrogen removal but also alleviated membrane fouling. This study provided an effective strategy for sustainable operation of MBR.
Collapse
Affiliation(s)
- Rui Huang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; Guangdong GDH Water Co. Ltd, Shenzhen 518021, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingyue Geng
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xing Yin
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
9
|
Castellano-Hinojosa A, Gallardo-Altamirano MJ, González-López J, González-Martínez A. Anticancer drugs drive changes in the performance, abundance, diversity, and composition of eukaryotic communities of an aerobic granular sludge system. CHEMOSPHERE 2023; 345:140374. [PMID: 37844701 DOI: 10.1016/j.chemosphere.2023.140374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/30/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Anticancer drugs are emerging contaminants that are being increasingly detected in urban wastewater. However, there is limited knowledge on the use of biological wastewater treatments, such as granular sludge systems (AGSs), to remove these substances and on their impacts on the general performance of the system and the eukaryotic communities in the granules. We investigated the impacts of three anticancer drugs commonly found in wastewater treatment plants and applied at three different concentrations on the removal efficiency of anticancer drugs, physicochemical parameters, and the eukaryotic microbiome of an AGS operated in a sequential batch reactor (SBR). Anticancer drugs applied at medium and high concentrations significantly decreased the removal efficiency of total nitrogen, the granular biomass concentration, and the size and setting velocity of granules. However, these effects disappeared after not adding the drugs for about a month thus showing the plasticity of the system to return to original levels. Regardless of the concentration of anticancer drugs tested, the AGS technology was effective in removing these substances, with removal rates in the range of 68.5%-100%. The presence of anticancer drugs at medium and high concentrations significantly decreased the abundance of total fungi, an effect that was linked to changes in the physicochemical parameters. Anticancer drugs also induced decreases in the diversity of the eukaryotic community, altered the community composition, and reduced the network complexity when applied at medium and high concentrations. Taxa responsive to the presence of anticancer drugs were identified. The diversity and composition of the eukaryotic microbiome returned to original diversity levels after not adding the drugs for about a month. Overall, this study increases our understanding of the impacts of anticancer drugs on the performance and eukaryotic microbiome of an AGS and highlights the need for monitoring these substances.
Collapse
Affiliation(s)
| | | | - Jesús González-López
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | | |
Collapse
|
10
|
Han X, Tang R, Liu C, Yue J, Jin Y, Yu J. Rapid, stable, and highly-efficient development of salt-tolerant aerobic granular sludge by inoculating magnetite-assisted mycelial pellets. CHEMOSPHERE 2023; 339:139645. [PMID: 37495046 DOI: 10.1016/j.chemosphere.2023.139645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Long cultivation time hinders the industrial applications of aerobic granular sludge (AGS) in treatment of hypersaline wastewater. Mycelial pellets (MPs) have been used to efficiently strengthen the flocculent sludge aggregation and accelerate the formation of AGS. However, the MPs-based AGS was easily crushed or fragmented into several small pieces/granules that brought the uncertainty and extended the transition process to form mature AGS. In this study, magnetite was used to strengthen MPs (halotolerant fungus Cladosporium tenuissimum NCSL-XY8), and co-culture and adsorption type of magnetite-assisted mycelial pellets (CMMPs and AMMPs) were prepared and used for acceleration of salt-tolerant aerobic granular sludge (SAGS) cultivation under 3% salinity conditions. Compared to inoculating MPs, the inoculation of either CMMPs or AMMPs could stably transition to mature SAGS without evident fragmentation, which obviously increased the certainty and stability of SAGS formation. Also, highly-efficient simultaneous nitrogen and carbon removal (∼98% TOC and ∼80% TN removal) could be reached in 8 days. Typically, the granules maintained perfect characteristics (D50 > 1300 μm, D10 > 350 μm, SVI30 < 45 mL/g, and SVI30/SVI5 = 1.0) during the whole cultivation/transition processes (Day 0-55) by using the inoculum of CMMPs. ITS rDNA sequencing revealed the inoculated fungus Cladosporium tenuissimum played key roles in the formation of SAGS. All the phenomena indicated the rapid, stable, and highly-efficient start-up of SAGS could be successfully realized by inoculating CMMPs.
Collapse
Affiliation(s)
- Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Rui Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Changshen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingxue Yue
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianguo Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
11
|
Cheng L, Wei M, Hu Q, Li B, Li B, Wang W, Abudi ZN, Hu Z. Aerobic granular sludge formation and stability in enhanced biological phosphorus removal system under antibiotics pressure: Performance, granulation mechanism, and microbial successions. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131472. [PMID: 37099906 DOI: 10.1016/j.jhazmat.2023.131472] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Wastewater containing antibiotics can pose a significant threat to biological wastewater treatment processes. This study investigated the establishment and stable operation of enhanced biological phosphorus removal (EBPR) by aerobic granular sludge (AGS) under mixed stress conditions induced by tetracycline (TC), sulfamethoxazole (SMX), ofloxacin (OFL), and roxithromycin (ROX). The results show that the AGS system was efficient in removing TP (98.0%), COD (96.1%), and NH4+-N (99.6%). The average removal efficiencies of the four antibiotics were 79.17% (TC), 70.86% (SMX), 25.73% (OFL), and 88.93% (ROX), respectively. The microorganisms in the AGS system secreted more polysaccharides, which contributed to the reactor's tolerance to antibiotics and facilitated granulation by enhancing the production of protein, particularly loosely bound protein. Illumina MiSeq sequencing revealed that putative phosphate accumulating organisms (PAOs)-related genera (Pseudomonas and Flavobacterium) were enormously beneficial to the mature AGS for TP removal. Based on the analysis of extracellular polymeric substances, extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and microbial community, a three-stage granulation mechanism was proposed including adaption to the stress environment, formation of early aggregates and maturation of PAOs enriched microbial granules. Overall, the study demonstrated the stability of EBPR-AGS under mixed antibiotics pressure, providing insight into the granulation mechanism and the potential use of AGS for wastewater treatment containing antibiotics.
Collapse
Affiliation(s)
- Long Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingyu Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qixing Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingtang Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenjia Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zaidun Naji Abudi
- Environmental Engineering Department, College of Engineering, Mustansiriyah University, Baghdad 999048, Iraq
| | - Zhiquan Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
12
|
Zhang Y, He Y, Huang J, Chen J, Jia X, Peng X. Dimorphism of Candida tropicalis and its effect on nitrogen and phosphorus removal and sludge settleability. BIORESOURCE TECHNOLOGY 2023; 382:129186. [PMID: 37201869 DOI: 10.1016/j.biortech.2023.129186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
Candida tropicalis PNY, a novel dimorphic strain with the capacity of simultaneous carbon, nitrogen and phosphorus removal in anaerobic and aerobic conditions, was isolated from activated sludge. Dimorphism of C. tropicalis PNY had effect on removing nitrogen and phosphorous and slightly affected COD removal under aerobic condition. Sample with high hypha formation rate (40 ± 5%) had more removal efficiencies of NH4+-N (50 mg/L) and PO43--P (10 mg/L), which could achieve 82.19% and 97.53%, respectively. High hypha cells dosage exhibited good settleability and filamentous overgrowth was not observed. According to label-free quantitative proteomics assays. Up-regulated proteins involved in the mitogen-activated protein kinase (MAPK) pathway indicated the active growth and metabolism process of sample with high hypha formation rate (40 ± 5%). And proteins concerning about glutamate synthetase and SPX domain-contain protein explain for the nutrient removal mechanism including assimilation of ammonia and polyphosphates synthesis.
Collapse
Affiliation(s)
- Yaqi Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingfei Huang
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China.
| | - Jiejing Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
13
|
Jin Y, Xiong W, Liu D, Wu Z, Xiao G, Wang S, Su H. Responses of straw foam-based aerobic granular sludge to atrazine: Insights from metagenomics and microbial community variations. CHEMOSPHERE 2023; 331:138828. [PMID: 37137392 DOI: 10.1016/j.chemosphere.2023.138828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Atrazine (ATZ) has caused serious environmental pollution, but the biodegradation of ATZ is relatively slow and inefficient. Herein, a straw foam-based aerobic granular sludge (SF-AGS) was developed, the spatially ordered architectures of which could greatly improve the drug tolerance and biodegradation efficiency of ATZ. The results showed that, in the presence of ATZ, chemical oxygen demand (COD), ammonium nitrogen (NH4+-N), total phosphorus (TP), and total nitrogen (TN) were effectively removed within 6 h, and the removal efficiencies were as high as 93.37%, 85.33%, 84.7%, and 70%, respectively. Furthermore, ATZ stimulated microbial consortia to secrete three times more extracellular polymers compared to without ATZ. Illumina MiSeq sequencing results showed that bacterial diversity and richness decreased, leading to significant changes in microbial population structure and composition. ATZ-resistant bacteria including Proteobacteria, Actinobacteria, and Burkholderia laid the biological basis for the stability of aerobic particles, efficient removal of pollutants, and degradation of ATZ. The study demonstrated that SF-AGS is feasible for ATZ-laden low-strength wastewater treatment.
Collapse
Affiliation(s)
- Yu Jin
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wei Xiong
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Dan Liu
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhiqing Wu
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Gang Xiao
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
14
|
Zhang B, Wu L, Guo Y, Lens PNL, Shi W. Rapid establishment of algal-bacterial granular sludge system by applying mycelial pellets in a lab-scale photo-reactor under low aeration conditions: Performance and mechanism analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121183. [PMID: 36736568 DOI: 10.1016/j.envpol.2023.121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Light-driven algal-bacterial granular sludge (ABGS) is an innovative low-carbon technology with significant merits in treating municipal wastewater, but how to shorten the photogranulation process, especially under low aeration conditions, is largely unknown. Herein, two strategies were proposed to accelerate the start-up of the ABGS system in photo-sequencing batch reactors (PSBRs) with a low superficial gas velocity of 0.5 cm/s. Compared to directly dosing mycelial pellets (MPs), applying MPs to flocculate algae and using the formed algal-mycelial pellets (AMPs) as carriers enhanced the establishment of the algal-bacterial symbiosis. The ABGS system developed rapidly within 20 days, with a large particle diameter (mean diameter of 321 μm) and excellent settleability (SVI30 of 55.4 mL/g). More importantly, this system could be stably operated for at least 100 days, mainly attributed to the reinforced secretion of protein with unique secondary structure and elevated hydrophobic functional groups. As for the reactor performance, the average removal efficiencies of the ABGS system were 97.8% for organic matter, 80.0% for total nitrogen, and 84.4% for phosphorus. The enrichment of functional bacteria and algae, and the up-regulation of functional genes and enzymes involved in electron production and transport processes likely drove the transformation of the pollutants, underlining the inherent mechanism for the excellent nutrient removal performance. This study provides a promising approach to solve the problem of a long ABGS start-up period and unstable granular structure under low aeration conditions, which is significant for achieving effective wastewater treatment without energy intensive aeration.
Collapse
Affiliation(s)
- Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Lian Wu
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yuan Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, Westvest 7, 2601, DA, Delft, the Netherlands
| | - Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
15
|
Sun Z, Zhang J, Wang J, Zhu H, Xiong J, Nong G, Luo M, Wang J. Direct start-up of aerobic granular sludge system with dewatered sludge granular particles as inoculant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116540. [PMID: 36427360 DOI: 10.1016/j.jenvman.2022.116540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Aerobic granular sludge (AGS) is a promising technology for engineering applications in the biological treatment of sewage. New objective is to skip the conventional granulation step to integrate it into a continuous-flow reactor directly. This study proposed a method for integrating spherical pelletizing granular sludge (SPGS) into a new patented aerobic granular sludge bed (AGSB), a continuous up-flow reactor. AGSB system could be startup directly, and after 120 days of operation, the SPGS maintained a relatively intact spherical structure and stability. With an initial high chemical oxygen demand (COD) volume loading of over 2.0 kg/(m3·d), this system achieved the desired effect as the same as a mature AGS system. The final mixed liquid suspended solids, and the ratio of 30 min-5 min sludge volume index (SVI30/SVI5) were 20,000 mg/L, and 0.84, respectively. Although hydraulic elution and filamentous bacteria (FBs) had a slightly negative impact on initial phase pollutant removal, the final removal rates for COD, total nitrogen (TN), ammonia nitrogen (NH4+-H), and total phosphorus (TP) were 90%, 70%, 95%, and 85%, respectively. The presence of specific functional microorganisms promoted the secretion of extracellular polymeric substances (EPS), from 90.65 to 209.78 mg/gVSS. The maturation process of SPGS altered the microbial community structures and reduced the species abundance of microbes in sludge.
Collapse
Affiliation(s)
- Zhuo Sun
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China; Branch Graduate School of Guangxi Bossco Environmental Protection Technology Co., Ltd, Guangxi University, Nanning, 530007, People's Republic of China
| | - Jiaming Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jin Wang
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guoyou Nong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Mengqi Luo
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, 530007, People's Republic of China
| | - Jue Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| |
Collapse
|
16
|
Xiao X, Guo H, Ma F, Zhang J, Ma X, You S. New insights into mycelial pellets for aerobic sludge granulation in membrane bioreactor: Bio-functional interactions among metazoans, microbial communities and protein expression. WATER RESEARCH 2023; 228:119361. [PMID: 36402059 DOI: 10.1016/j.watres.2022.119361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/27/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Direct cultivation of aerobic granular sludge (AGS) in membrane bioreactor (MBR) has gained increasing attention. Mycelial pellets (MPs) has been shown capable of promoting rapid granulation of aerobic sludge in MBR, yet mechanisms remain unclear and in-depth insight into cross-scale interactions between MPs and indigenous microbiota as well as the corresponding protein expression functions is necessary. Herein, we found that the addition of MPs in MBR resulted in massive growth of metazoans with 40-400 /mL for rotifers, 20-140 /mL for nematodes and 2-420 /mL for oligochaetes in the initial phase of granulation. This facilitated the MPs to rapidly aggregate with bacteria to form defensive granules for physical protection from predation by metazoans, which inhibited the overgrowth of filamentous bacteria Thiothrix and promoted the reproduction of functional bacteria related to nitrogen removal (Nitrospira, Trichococcus and Acinetobacter). Proteomic analysis demonstrated that the upregulation of functional proteins was mainly ascribed to the decrease of Thiothrix and the increase of Nitrospira, resulting in the enhancement of metabolic pathways involved in glycolysis/gluconeogenesis, citrate (TCA) cycle, oxidative phosphorylation, pyruvate metabolism, nitrogen metabolism and biosynthesis of amino acids, which was responsible for MPs-induced AGS with denser structure, more abundant proteins and β-polysaccharides, higher species diversity, significant nitrogen removal (33.12-42.33%) and lower membrane fouling potential. This study provided a novel and comprehensive insight into the enhanced granulation of aerobic sludge by MPs and the functional superiority of MPs-induced AGS in MBR system.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haijuan Guo
- School of Environment, Liaoning University, Shenyang 110036, PR China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiping Ma
- School of Environment, Liaoning University, Shenyang 110036, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
17
|
Ouyang L, Qiu B. Positive effects of magnetic Fe 3O 4@polyaniline on aerobic granular sludge: Aerobic granulation, granule stability and pollutants removal performance. BIORESOURCE TECHNOLOGY 2023; 368:128296. [PMID: 36370942 DOI: 10.1016/j.biortech.2022.128296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The magnetic material has been determined to have a positive effect on sludge granulation and wastewater treatment performance. In this study, the effect of magnetic Fe3O4@polyaniline (Fe3O4@PANI) on aerobic granulation, granule stability, and pollutants removal performance was evaluated by adding it into a sequencing batch reactor to cultivate aerobic granular sludge (AGS). The results indicated that the composite combined the advantages of PANI and Fe3O4 to promote the formation of AGS during the granulation period. The Fe3O4@PANI stimulated the granules to secrete extracellular polymeric substances with a higher proteins/polysaccharides ratio, thus enhancing the stability of the AGS. In addition, microbial community analysis revealed that the great performance of the AGS on denitrification and phosphorus removal could be attributed to the enrichment of denitrifying bacteria, phosphorus accumulating organisms (PAO), and denitrifying PAO by Fe3O4@PANI. Thus, Fe3O4@PANI has been demonstrated to have a positive effect on the formation and stability of AGS.
Collapse
Affiliation(s)
- Lingfeng Ouyang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
18
|
Zou X, Gao M, Mohammed A, Liu Y. Responses of various carbon to nitrogen ratios to microbial communities, kinetics, and nitrogen metabolic pathways in aerobic granular sludge reactor. BIORESOURCE TECHNOLOGY 2023; 367:128225. [PMID: 36332856 DOI: 10.1016/j.biortech.2022.128225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The role of different ammonia concentrations (mg N/L) (of 100 (carbon to nitrogen ratio (C/N) = 12; Stage I), 200 (C/N = 6; Stage II), 400 (C/N = 3; Stage III) and 200 (C/N = 6; Stage IV)) in nitrogen metabolic pathways, microbial community, and specific microbial activity were investigated in an aerobic granular sludge reactor. Heterotrophic ammonia oxidizing bacteria (HAOB) showed higher ammonia oxidation rates (AORs) than autotrophic ammonia oxidizing bacteria (AAOB) at higher C/N conditions (Stages I and II). Paracoccus was the dominant HAOB. AAOB, with only 0.2-0.3 % in relative abundance, showed 2.7-fold higher AORs than HAOB at elevated ammonia and free ammonia (FA) concentrations with C/N at 3. Nitrosomonas and a genus in Nitrosomondaceae family were the major AAOB. This study proposed that FA inhibition on heterotrophic bacteria might be the mechanism that contributes to the development of the autotrophic ammonia oxidation pathway and enrichment of AAOB.
Collapse
Affiliation(s)
- Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mengjiao Gao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Abdul Mohammed
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
19
|
Wan C, Fu L, Li Z, Liu X, Lin L, Wu C. Formation, application, and storage-reactivation of aerobic granular sludge: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116302. [PMID: 36150350 DOI: 10.1016/j.jenvman.2022.116302] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
It was an important discovery in wastewater treatment that the microorganisms in the traditional activated sludge can form aerobic granular sludge (AGS) by self-aggregation under appropriate water quality and operation conditions. With a typical three-dimensional spherical structure, AGS has high sludge-water separation efficiency, great treatment capacity, and strong tolerance to toxic and harmful substances, so it has been considered to be one of the most promising wastewater treatment technologies. This paper comprehensively reviewed AGS from multiple perspectives over the past two decades, including the culture conditions, granulation mechanisms, metabolic and structural stability, storage, and its diverse applications. Some important issues, such as the reproducibility of culture conditions and the structural and functional stability during application and storage, were also summarized, and the research prospects were put forward. The aggregation behavior of microorganisms in AGS was explained from the perspectives of physiology and ecology of complex populations. The storage of AGS is considered to have large commercial potential value with the increase of large-scale applications. The purpose of this paper is to provide a reference for the systematic and in-depth study on the sludge aerobic granulation process.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Liya Fu
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhengwen Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| | - Lin Lin
- Environmental Science and New Energy Technology Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Changyong Wu
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
20
|
Zhang X, Lei Z, Liu Y. Microalgal-bacterial granular sludge for municipal wastewater treatment: From concept to practice. BIORESOURCE TECHNOLOGY 2022; 354:127201. [PMID: 35460841 DOI: 10.1016/j.biortech.2022.127201] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Recently, increasing interest has been placed in microalgal-bacterial granular sludge (MBGS) in the journey towards the energy and carbon neutrality of municipal wastewater treatment. Different from aerobic granular sludge, the performance of MBGS is mainly determined by the mutualism and symbiosis between coexisting microalgae and bacteria. It appears from the literature that most of studies on MBGS were conducted at small benchtop scales under controlled conditions with synthetic wastewater. Therefore, this article attempts to look into the major engineering gaps between the knowledge generated from numerous laboratory research works and the large-scale application of MBGS, including massive production of MBGS, type of bioreactor, effect of alternate photo and dark metabolisms on effluent quality, resource recovery from waste MBGS, etc. It is clearly demonstrated that MBGS is still at its infant stage, and more effort is strongly needed to identify the technological bottlenecks of full-scale applications, while providing corresponding engineering solutions.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore.
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
21
|
Zhang B, Wu L, Shi W, Zhang Z, Lens PNL. A novel strategy for rapid development of a self-sustaining symbiotic algal-bacterial granular sludge: Applying algal-mycelial pellets as nuclei. WATER RESEARCH 2022; 214:118210. [PMID: 35220065 DOI: 10.1016/j.watres.2022.118210] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Algal-bacterial granular sludge (ABGS) is a promising technology for wastewater treatment, benefiting from the synergetic interactions between algae and bacteria. However, the rapid start-up of the ABGS system is not trivial. Herein, a novel strategy was proposed by applying the algal-mycelial pellets (AMPs) as the primary nuclei for accelerating the development of a self-sustaining symbiotic ABGS system. The results indicated that by using this strategy complete granulation was shortened to 12 days, much shorter than the control system without AMPs dosage (28 days). The ABGS had a large particle diameter (3.3 mm), compact granular structure (1.0253 g/mL), and excellent settleability (SVI30 of 53.2 mL/g). Moreover, 98.6% of COD, 80.8% of TN and 80.0% of PO43--P were removed by the ABGS. The nuclei of targeted algae (Chlorella) and filamentous fungi (Aspergillus niger), the enhanced production of extracellular polymeric substances (especially proteins) and the enrichment of functional bacteria (such as Neomegalonema and Flavobacterium) facilitated the granules development. The low surface free energy (-69.56 mJ/m2) and energy barrier (89.93 KT) were the inherent mechanisms for the strong surface hydrophobicity, the easy bacterial adhesion, and the short granulation period. This study provides an economically feasible approach to accelerate ABGS granulation and sustain system stability.
Collapse
Affiliation(s)
- Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Lian Wu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, Westvest 7, DA Delft 2601, the Netherlands
| |
Collapse
|
22
|
Xiao X, Ma F, You S, Guo H, Zhang J, Bao X, Ma X. Direct sludge granulation by applying mycelial pellets in continuous-flow aerobic membrane bioreactor: Performance, granulation process and mechanism. BIORESOURCE TECHNOLOGY 2022; 344:126233. [PMID: 34743997 DOI: 10.1016/j.biortech.2021.126233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
This study provides a sustainable manner for direct cultivation of aerobic granular sludge (AGS) by addition of mycelial pellets (MPs) into continuous-flow aerobic MBR. The results showed that the granulation time in MPs-MBR was shortened by at least 65 days, accounting for enhanced mean size of granules (0.68-0.76 mm), increased mixed liquor suspended solids (MLSS) concentration (12.8 g/L) and improved settling ability (78.1 mL/g), in comparison with that of 0.23-0.28 mm, 9.8 g/L and 102.1 mL/g in control MBR. MPs-MBR demonstrated significant advantages in terms of COD reduction (97.0-99.1%), NH4+-N reduction (100%) and TN reduction (32.27-42.33%). MPs, extracellular polymeric substances (EPS) and filamentous bacteria acted as inducible nucleus, crosslinking matter and supporting skeleton, respectively, in favor of promoting the formation and stabilization of AGS with a four-layered structure. The relevant mechanism was underlined by rheological analysis, indicating that MPs addition enhanced non-Newtonian flow characteristics and network structure of sludge.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haijuan Guo
- School of Environment, Liaoning University, Shenyang 110036, PR China; College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, PR China.
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaotong Bao
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, PR China
| | - Xiping Ma
- School of Environment, Liaoning University, Shenyang 110036, PR China
| |
Collapse
|
23
|
Cui L, Shen H, Kang P, Guo X, Li H, Wang Y, Wan J, Dagot C. Stability and nutrients removal performance of a Phanerochaete chrysosporium-based aerobic granular sludge process by step-feeding and multi A/O conditions. BIORESOURCE TECHNOLOGY 2021; 341:125839. [PMID: 34523562 DOI: 10.1016/j.biortech.2021.125839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
A Phanerochaete chrysosporium-based aerobic granular sludge (PC-AGS) was developed by inoculating fungal mycelial pellets into a lab-scale aerobic granular sequencing batch reactor (AGSBR). A strategy using step-anaerobic feeding coupled with multi A/O conditions was adopted. The results showed that the removal efficiencies for total phosphorus (TP) and total inorganic nitrogen (TIN) were 94.56 ± 2.92% and 75.20 ± 7.74%, respectively, under relatively low aeration time. Compared with original AGS, the content of extracellular proteins for PC-AGS obviously increased from 18.61 to 41.44 mg/g MLSS by the end of phase I. Moreover, the mature granules had a larger size and better stability during the 100 days operation. Furthermore, the analysis of microbial diversity detected many key functional groups in PC-AGS granules that were beneficial to nutrients removal. This work demonstrated that the addition of fungal pellets not only enhanced the removal performance, but also improved the stability of the AGS system.
Collapse
Affiliation(s)
- Lihui Cui
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hao Shen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Pengfei Kang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiaoying Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou 450001, PR China
| | - Haisong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yan Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou 450001, PR China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China; GRESE EA 4330, Université de Limoges, 123 avenue Albert Thomas, F-87060 Limoges Cedex, France.
| | - Christophe Dagot
- GRESE EA 4330, Université de Limoges, 123 avenue Albert Thomas, F-87060 Limoges Cedex, France; INSERM, U1092, Limoges, France
| |
Collapse
|
24
|
Wang Y, Wang J, Liu Z, Huang X, Fang F, Guo J, Yan P. Effect of EPS and its forms of aerobic granular sludge on sludge aggregation performance during granulation process based on XDLVO theory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148682. [PMID: 34328949 DOI: 10.1016/j.scitotenv.2021.148682] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Different forms of extracellular polymeric substances (EPS) play different roles in the formation process of aerobic granular sludge (AGS). This work focused on the contribution of loosely bound EPS (LB-EPS), tightly bound EPS (TB-EPS) and EPS to the aggregation between sludge cells during the start-up of aerobic granular sludge in a sequencing batch reactor. By analyzing the changes of sludge surface characteristics before and after the extraction of each layer of EPS, the contribution of LB-EPS, TB-EPS and EPS to the adhesion and aggregation of sludge cells in the granulation was calculated by surface thermodynamics and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. The experimental results showed that AGS reactor basically completed the granulation process and kept stable operation within 40 d. In the process of sludge granulation, the effect of LB-EPS on the aggregation of sludge cells shifted from attraction to repulsion. TB-EPS could improve the surface zeta potential and hydrophobicity and show an attractive effect in the granulation process, which was conducive to the adhesion between sludge cells and was the main contributor to the formation of granules. Additionally, EPS played an apparently positive role in sludge flocculation and could promoted cell aggregation in the whole granulation process.
Collapse
Affiliation(s)
- Yaying Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jiaqin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhiping Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; School of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Xiaohua Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
25
|
Xiao X, Guo H, Ma F, You S, Geng M, Kong X. Biological mechanism of alleviating membrane biofouling by porous spherical carriers in a submerged membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148448. [PMID: 34146804 DOI: 10.1016/j.scitotenv.2021.148448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, porous spherical carriers were fixed around the hollow fiber membrane module to mitigate membrane biofouling. Two MBRs (R1 without carriers, R2 with carriers) were operated for 31 days under identical operating conditions to investigate the effects of the carriers on the reactor performances, the production of extracellular polymeric substances (EPS), the level of N-acyl-homoserine lactones (AHLs), and the microbial communities. The results showed that the presence of carriers in MBR was conducive to nitrogen removal and decreased the total membrane filtration resistance by about 1.7 times. Slower transmembrane pressure (TMP) rise-up, thinner bio-cakes, lower EPS production, and fewer tryptophan and aromatic proteins substances on the membrane surface were observed in R2. The polysaccharides secretion of EPS in bio-cakes was mainly regulated by C4-HSL and 3OC6-HSL in the presence of carriers. The microbial community analysis revealed that carriers addition reduced the relative abundance of EPS and AHL producing bacteria in the membrane bio-cakes and enriched the accumulation of functional bacteria conducive to nutrient removal in the mixed liquor. This study provided an in-depth understanding for the application of porous spherical carriers to alleviate membrane biofouling.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haijuan Guo
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, PR China..
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Mingyue Geng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiangzhen Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|