1
|
Bhatia SK, Gurav R, Yang YH. A review on waste activated sludge pretreatment for improved volatile fatty acids production and their upcycling into polyhydroxyalkanoates. Int J Biol Macromol 2025; 308:142562. [PMID: 40154714 DOI: 10.1016/j.ijbiomac.2025.142562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Waste activated sludge (WAS), a byproduct of wastewater treatment (WWTPs) facilities is challenging to manage because of its high organic content. Most of WAS is managed via anaerobic digestion (AD) to produce biogas, which is not deemed economically viable. The AD of WAS into volatile fatty acids (VFA) and their subsequent upcycling into polyhydroxyalkanoates (PHA) is gaining popularity due to their high value and uses. However, the fundamental issue with WAS is its low solubility, and pretreatment is required to increase it. Pretreatment disintegrates sludge floc and enhances its solubility, supports acetogens, and inhibits methanogens, leading to increased VFA synthesis in the AD process. The key factors influencing VFA yield include the size of the sludge granules, the mixing rate, and the presence of resistant organic components. Fermented broth containing VFA from AD can be utilized directly as a feedstock for microbial fermentation to produce PHA using both pure as well as mixed cultures. Utilisation of mixed cultures is useful since they are robust, able to consume a wide range of substrates, and do not require sterility. In addition, the VFA, which is made up of various organic acids, impacts the structure, productivity, characteristics, and type of PHA produced by microbial communities. Considering the importance of WAS management through VFA production and its integration with PHA production process this review article discusses the WAS pretreatment strategies, various factors that influence the AD process, trends in VFA to PHA production technologies with challenges, and possible solutions for integrated process development.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Ranjit Gurav
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Yung-Hun Yang
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Gaballah ES, Gao L, Shalaby EA, Yang B, Sobhi M, Ali MM, Samer M, Tang C, Zhu G. Performance and mechanism of a novel hydrolytic bacteria pretreatment to boost waste activated sludge disintegration and volatile fatty acids production during acidogenic fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124399. [PMID: 39914216 DOI: 10.1016/j.jenvman.2025.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
In this study, an innovative mixed hydrolytic bacteria culture (HB) (the main dominant bacterial species: Lactobacillus acetotolerans), as an environmentally friendly pretreatment technique, was developed to enhance the volatile fatty acids (VFAs) production from waste-activated sludge (WAS). The highest VFAs production of 517 and 518 mg/g VSS were achieved with HB 8% and HB 8%-35 °C pretreatments, which were almost 3.6 folds compared to the control (143 mg/g VSS), respectively. The mechanism analysis revealed that HB boosted the bioavailability of organics released from WAS and significantly accelerated sludge solubilization. Protease and α-glucosidase enzymatic activity were improved and associated with hydrolysis and acidogenesis. Furthermore, the microbial community analysis showed that HB pretreatment significantly increased the hydrolytic and acidifying bacteria proportions (e.g., Veillonella, Macellibacteroides sp., Clostridium_sensu_stricto_1 and Bacteroides sp., etc.). This study provides a promising, low-cost, and eco-friendly approach for recovering resources from WAS and transforming them into high-value products.
Collapse
Affiliation(s)
- Eid S Gaballah
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Agricultural Engineering Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Lei Gao
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Emad A Shalaby
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Biao Yang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Mostafa Sobhi
- Agricultural and Bio-systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, 21526, Egypt
| | - Mahmoud M Ali
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China; Agricultural Engineering Research Institute (AEnRI), Agricultural Research Center (ARC), Giza, 12611, Egypt
| | - Mohamed Samer
- Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, El-Gammaa Street, 12613, Giza, Egypt
| | - Chongpeng Tang
- China CAMCE Environmental Technology Co., Ltd, Beijing, 100080, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
3
|
Zeng D, Ma M, Huang X, Zhang C. Total-solids-controlled microbial response and volatile fatty acids production in sludge and chicken manure co-fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124253. [PMID: 39854901 DOI: 10.1016/j.jenvman.2025.124253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/11/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
With the aim of exploring the association between microbial response and volatile fatty acids (VFAs) production in sludge and chicken manure co-fermentation with total solids (TS) controlled, four fermentation experimental groups (TS = 20, 40, 60, and 80 g/L) were established in this study. The results demonstrated that the yield of VFAs reached the peak (530.08 mg COD/g VSS) at the 40 g-TS group. For microbial characteristics, Firmicutes, Bacteroidota, Spirochaetota, and Proteobacteria were the main dominant phyla in each experimental group. Meanwhile, it could be proven that the enrichment of functional strains had a significant effect on the production and accumulation of VFAs at the 40 g-TS group through α analysis and microbial community structure analysis. In addition, Bacteroidota was predicted to be the main producer of VFAs in the experimental co-fermentation systems through the Faprotax function prediction. This study revealed the effects of different TS concentrations on microbial communities in sludge and chicken manure co-fermentation, and investigated the relationship between microbial community and VFAs production.
Collapse
Affiliation(s)
- Daojing Zeng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Mengsha Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Chengdai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
4
|
Zheng Y, Chen P, Wang E, Ren Y, Ran X, Li B, Dong R, Guo J. Key enzymatic activities and metabolic pathway dynamics in acidogenic fermentation of food waste: Impact of pH and organic loading rate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123983. [PMID: 39742756 DOI: 10.1016/j.jenvman.2024.123983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Acidogenic fermentation was an effective technology to recover volatile fatty acids (VFAs) ethanol and lactic acid from food wastes (FW) as bioresources. However, the impact of process controls on key functional enzymes and metabolic pathways has been inadequately understood. In this study, the metabolite distribution, key functional enzymes and metabolic pathways were completely elucidated using 16S rRNA gene high-throughput sequencing combined with PICRUSt2. Results demonstrated pH significantly affected fermentation types by influencing key enzyme activities, while organic loading rate (OLR) primarily affected the yield without altering metabolic pathway. The maximum VFAs production was achieved at pH 6.0 and OLR of 15.0 g-VS/L/d as a result of Glycolysis and Pyruvate Metabolism were enhanced. Meanwhile, butyric acid was always dominant product, attributed to the enhanced activity of butyryl-CoA dehydrogenasedue. Furthermore, Lactobacillus enrichment and lactate dehydrogenase upregulation promoted lactate-type fermentation under without pH control (3.8), resulting in an average yield of lactic acid was 7.84 g/L. When the pH was raised from 3.8 to 5.0,downregulation of lactate dehydrogenase and upregulation of acetate kinase shifted the fermentation to acetate-type. This study provides a deeper understanding of how does process controls influence the metabolic pathways and key functional enzymes.
Collapse
Affiliation(s)
- Yonghui Zheng
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Penghui Chen
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Enzhen Wang
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Yuying Ren
- College of Resource and Environmental Sciences, PR China Agricultural University, Beijing 100083, China
| | - Xueling Ran
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Bowen Li
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
5
|
Sun Y, Sun Y, Ren X, Xuan Y, Liu M, Bai G, Jiang F. Enhancement of volatile fatty acids to extremely high content in fermentation of food waste: Optimization of conditions, microbial functional genes, and mechanisms. BIORESOURCE TECHNOLOGY 2025; 416:131735. [PMID: 39489313 DOI: 10.1016/j.biortech.2024.131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The engineering application of volatile fatty acids (VFA) production from food waste (FW) can significantly enhance resource utilization. Enhancing VFA production is crucial for advancing this engineering application. This study presented a economically-feasible method to achieve high VFA production from FW: Conducting fermentation at pH 9 and 37 ℃ with addition of 20 % anaerobic sludge significantly increased the conversion of FW to VFAs (80.56 g COD/L, accounting for 87.37 % of the soluble chemical oxygen demand), while also increasing the content of NH4+-N (2658.15 mg/L). Macrotranscriptomic sequencing showed that Anaerosalibacter, Amphibacillus, Wansuia, Clostridiisalibacter, unclassified Tissierellia, Massilibacterium, unclassified Bacteroidales, and Tissierellia were the key active microorganisms for VFA production. The expression abundance of functional enzymes and genes related to VFA production pathways increased during the fermentation. This study significantly advanced the practical application of VFA production from FW, offering both theoretical insights and bacterial resources.
Collapse
Affiliation(s)
- Yujie Sun
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Yujiao Sun
- College of Water Science, Beijing Normal University, Beijing 100875, China.
| | - Xueqian Ren
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Yuanyan Xuan
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Meijun Liu
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Guomin Bai
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Fan Jiang
- College of Water Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Zhang Y, Wei YC, Zhang N, Wang C, Li XL, Bian ZT, Zhang K. Blueberry Anthocyanin Functionalized CaMoO 4:Tb 3+ Nanophosphors for Dual-Mode pH Sensing. LUMINESCENCE 2024; 39:e70033. [PMID: 39603813 DOI: 10.1002/bio.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
A series of green phosphors, Ca1-y%MoO4:y%Tb3+ (where y = 0.1, 0.5, 1, 2, 3, 4, and 5) were successfully prepared via hydrothermal synthesis. The pH levels were used to modulate the luminescent of CMO:Tb. To confirm the potential application of proposed phosphors, Blueberry anthocyanin (BBA) was loading onto CMO:Tb surface to form a luminescence probe. The synthesized phosphors and probes were characterized using X-ray diffraction (XRD), FT-IR spectra, transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). As a proof-of-concept, the constructed probes were adopted to evaluate the acidity of solution. The results showed that luminescence emission intensity at 546 nm increased with pH value increasing in the range of 2-12. Meanwhile, the color of the sensor solution changed from bright red to pink, then to purple, and finally to yellow as the pH varies between 2 and 12. The above results indicated that the proposed probe could evaluate the acidity of solution via the dual-mode luminescence detecting and naked eye to obtain accurate results. This proposed strategy gives an insight to design the efficient probes to precisely and sensitively evaluate the acidity in complex samples.
Collapse
Affiliation(s)
- Yi Zhang
- Anhui key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, China
| | - Yu-Chen Wei
- Anhui key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, China
| | - Na Zhang
- Anhui key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, China
- Jiangsu key Laboratory for Design and Manufacture of Micro-Nano Biomedical, Instruments, Southeast University, Nanjing, Jiangsu, China
| | - Cong Wang
- Anhui key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, China
| | - Xiao-Ling Li
- Anhui key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, China
| | - Zhen-Tao Bian
- Anhui key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, China
| | - Keying Zhang
- Anhui key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, China
| |
Collapse
|
7
|
Carranza Muñoz A, Olsson J, Malovanyy A, Baresel C, Machamada-Devaiah N, Schnürer A. Impact of thermal hydrolysis on VFA-based carbon source production from fermentation of sludge and digestate for denitrification: experimentation and upscaling implications. WATER RESEARCH 2024; 266:122426. [PMID: 39276471 DOI: 10.1016/j.watres.2024.122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Stricter nutrient discharge limits at wastewater treatment plants (WWTPs) are increasing the demand for external carbon sources for denitrification, especially at cold temperatures. Production of carbon sources at WWTP by fermentation of sewage sludge often results in low yields of soluble carbon and volatile fatty acids (VFA) and high biogas losses, limiting its feasibility for full-scale application. This study investigated the overall impact of thermal hydrolysis pre-treatment (THP) on the production of VFA for denitrification through the fermentation of municipal sludge and digestate. Fermentation products and yields, denitrification efficiency and potential impacts on methane yield in the downstream process after carbon source separation were evaluated. Fermentation of THP substrates resulted in 37-70 % higher soluble chemical oxygen demand (sCOD) concentrations than fermentation of untreated substrates but did not significantly affect VFA yield after fermentation. Nevertheless, THP had a positive impact on the denitrification rates and on the methane yields of the residual solid fraction in all experiments. Among the different carbon sources tested, the one produced from the fermentation of THP-digestate showed an overall better potential as a carbon source than other substrates (e.g. sludge). It obtained a relatively high carbon solubilisation degree (39 %) and higher concentrations of sCOD (19 g sCOD/L) and VFA (9.8 g VFACOD/L), which resulted in a higher denitrification rate (8.77 mg NOx-N/g VSS∙h). After the separation of the carbon source, the solid phase from this sample produced a methane yield of 101 mL CH4/g VS. Furthermore, fermentation of a 50:50 mixture of THP-substrate and raw sludge produced also resulted in a high VFA yield (283 g VFACOD/kg VSin) and denitrification rate of 8.74 mg NOx-N/g VSS∙h, indicating a potential for reduced treatment volumes. Calculations based on a full-scale WWTP (Käppala, Stockholm) demonstrated that the carbon sources produced could replace fossil-based methanol and meet the nitrogen effluent limit (6 mg/L) despite their ammonium content. Fermentation of 50-63 % of the available sludge at Käppala WWTP in 2028 could produce enough carbon source to replace methanol, with only an 8-20 % reduction in methane production, depending on the production process. Additionally, digestate production would be sufficient to generate 81 % of the required carbon source while also increasing methane production by 5 % if a portion of the solid residues were recirculated to the digester.
Collapse
Affiliation(s)
- Andrea Carranza Muñoz
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden; Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences (SLU), 756 51 Ultuna-Uppsala, Sweden.
| | - Jesper Olsson
- The Käppala Association, Södra Kungsvägen 315, 181 66 Lidingö, Sweden
| | - Andriy Malovanyy
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden
| | - Christian Baresel
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden
| | - Nethra Machamada-Devaiah
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 21 Stockholm, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences (SLU), 756 51 Ultuna-Uppsala, Sweden
| |
Collapse
|
8
|
Li L, Li W, Xue Y, Wang Z, Wang Y, Li R, Deng M, Xu Y, Peng L, Song K. Perfluorooctanoic acid effect and microbial mechanism to methane production in anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122412. [PMID: 39236608 DOI: 10.1016/j.jenvman.2024.122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Perfluorooctanoic acid (PFOA) as emerging pollutants was largely produced and stable in nature environment. Its fate and effect to the wasted sludge digestion process and corresponding microbial mechanism was rarely reported. This study investigated the different dose of PFOA to the wasted sludge digestion process, where the methane yield and microbial mechanism was illustrated. The PFOA added before digestion were 0-10000 μg/L, no significant variation in daily and accumulated methane production between each group. The 9th day methane yield was significantly higher than other days (p < 0.05). The soluble protein was significantly decreased after 76 days digestion (p < 0.001). The total PFOA in sludge (R2 = 0.8817) and liquid (R2 = 0.9083) phase after digestion was exponentially correlated with PFOA dosed. The PFOA in liquid phase was occupied 54.10 ± 18.38% of the total PFOA in all reactors. The dewatering rate was keep decreasing with the increase of PFOA added (R2 = 0.7748, p < 0.001). The mcrA abundance was significantly correlated with the pH value and organic matter concentration in the reactors. Chloroflexi was the predominant phyla, Aminicenantales, Bellilinea and Candidatus_Cloacimonas were predominant genera in all reactors. Candidatus_Methanofastidiosum and Methanolinea were predominant archaea in all reactors. The function prediction by FAPROTAX and Tax4fun implied that various PFOA dosage resulted in significant function variation. The fermentation and anaerobic chemoheterotrophy function were improved with the PFOA dose. Co-occurrence network implied the potent cooperation among the organic matter degradation and methanogenic microbe in the digestion system. PFOA has little impact to the methane generation while affect the microbe function significantly, its remaining in the digested sludge should be concerned to reduce its potential environmental risks.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Yunpeng Xue
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zezheng Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuren Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Zhejiang, 325035, China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Ma M, Ma S, Zeng D, Huang X, Zeng Y, Zhu G, Chen L. Temperature-dependent microbial mechanism and accumulation of volatile fatty acids in primary sludge pretreated with peroxymonosulfate. BIORESOURCE TECHNOLOGY 2024; 408:131201. [PMID: 39097236 DOI: 10.1016/j.biortech.2024.131201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
For revealing the influence of temperature on volatile fatty acids (VFAs) generation from primary sludge (PS) during the anaerobic fermentation process facilitated by peroxymonosulfate (PMS), five fermentation groups (15, 25, 35, 45, and 55 °C) were designed. The results indicated that the production of VFAs (5148 mg COD/L) and acetic acid (2019 mg COD/L) reached their peaks at 45 °C. High-throughput sequencing technology disclosed that Firmicutes, Proteobacteria, and Actinobacteria was the dominant phyla, carbohydrate metabolism and membrane transport were the most vigorous at 45 °C. Additionally, higher temperature and PMS exhibit synergistic effects in promoting VFAs accumulation. This study unveiled the mechanism of the effect of the pretreatment of PS with PMS on the VFAs production, which established a theoretical foundation for the production of VFAs.
Collapse
Affiliation(s)
- Mengsha Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Silan Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Daojing Zeng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Yuanxin Zeng
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Gaoming Zhu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lixin Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
10
|
Gracia J, Acevedo O, Acevedo P, Mosquera J, Montenegro C, Cabeza I. Statistical modeling and optimization of volatile fatty acids production by anaerobic digestion of municipal wastewater sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34091-2. [PMID: 39198346 DOI: 10.1007/s11356-024-34091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/19/2024] [Indexed: 09/01/2024]
Abstract
Obtaining value-added products from renewable resources is limited by the lack of specific operating conditions optimized for the physico-chemical characteristics of the biomass and the desired end product. A mathematical model and statistical optimization were developed for the production of volatile fatty acids (VFAs) by anaerobic digestion of municipal sewage sludge. The experimental tests were carried out in triplicate and investigated a wide range of conditions: pH 9.5, 10.5, and 11.5; temperatures 25 °C, 35 °C, 45 °C, and 55 °C; primary sludge with organic loading (OL) of 10 and 14 g VS (volatile solids); and digested sludge with 4 and 6 g VS. Subsequently, a statistical search was performed to obtain optimal production conditions, then a statistical model of VFA production was developed and the optimal conditions were validated at pilot plant scale. The maximum VFA concentration predicted was 6975 mg COD (chemical oxygen demand)/L using primary sludge at 25 °C, initial OL of 14 g VS, and pH 10.5. The obtained third-degree model (r2 = 0.83) is a powerful tool for bioprocess scale-up, offering a promising avenue for sustainable waste management and biorefinery development.
Collapse
Affiliation(s)
- Jeniffer Gracia
- Universidad Distrital Francisco José de Caldas, 110221, Bogotá, Colombia
| | - Oscar Acevedo
- Faculty of Engineering, Design, and Innovation, Politécnico Grancolombiano, 110231, Bogotá, Colombia
| | | | - Jhessica Mosquera
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universidad Nacional de Colombia, 111321, Bogotá, Colombia
| | - Carlos Montenegro
- Universidad Distrital Francisco José de Caldas, 110221, Bogotá, Colombia
| | - Ivan Cabeza
- Energy, Materials and Environment Laboratory, Faculty of Engineering, Universidad de La Sabana, Autopista Norte, Campus Universitario Puente del Común, Km 7, 250001, Chía, Colombia.
| |
Collapse
|
11
|
Lin Q, Xi S, Cheng B, Jiang J, Zan F, Tang Y, Li Y, Khanal SK, Wang Z, Chen G, Guo G. Electrogenerated singlet oxygen and reactive chlorine species enhancing volatile fatty acids production from co-fermentation of waste activated sludge and food waste: The key role of metal oxide coated electrodes. WATER RESEARCH 2024; 260:121953. [PMID: 38901317 DOI: 10.1016/j.watres.2024.121953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Electrochemical pretreatment (EPT) has shown to be superior in improving acidogenic co-fermentation (Co-AF) of waste activated sludge (WAS) and food waste (FW) for volatile fatty acids (VFAs). However, the influence of EPT electrode materials on the production of electrogenerated oxidants (such as singlet oxygen (1O2) and reactive chlorine species (RCS)), as well as their effects on properties of electrodes, the microbial community structure and functional enzymes remain unclear. Therefore, this study investigated the effects of various metal oxide coated electrodes (i.e., Ti/PbO2, Ti/Ta2O5-IrO2, Ti/SnO2-RuO2, and Ti/IrO2-RuO2) on EPT and subsequent Co-AF of WAS-FW. The results showed that EPT with Ti/PbO2, Ti/Ta2O5-IrO2, Ti/SnO2-RuO2 and Ti/IrO2-RuO2 electrodes generated 165.3-848.2 mg Cl2/L of RCS and 5.643 × 1011-3.311 × 1012 spins/mm3 of 1O2, which significantly enhanced the solubilization and biodegradability of WAS-FW by 106.4 %-233.6 % and 177.3 %-481.8 %, respectively. Especially with Ti/Ta2O5-IrO2 as the electrode material, an appropriate residual RCS (2.0-10.4 mg Cl2/L) remained in Co-AF step, resulted in hydrolytic and acidogenic bacteria (e.g., Prevotella_7, accounting for 78.9 %) gradually become dominant rather than methanogens (e.g., Methanolinea and Methanothrix) due to their different tolerance to residual RCS. Meanwhile, the functional gene abundances of hydrolytic and acidogenic enzymes increased, while the methanogenic enzymes deceased. Consequently, this reactor produced the highest VFAs up to 545.5 ± 36.0 mg COD/g VS, which was 101.8 % higher than that of the Control (without EPT). Finally, the economic analysis and confirmatory experiments further proved the benefits of WAS-FW Co-AF with EPT.
Collapse
Affiliation(s)
- Qingshan Lin
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Chongqing University of Arts and Sciences, Yongchuan 402160, PR China
| | - Shihao Xi
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Boyi Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Jinqi Jiang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Feixiang Zan
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Yuanzhe Tang
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Chongqing University of Arts and Sciences, Yongchuan 402160, PR China
| | - Yeqing Li
- College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawaii at Mānoa, Honolulu, USA
| | - Zongping Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Guo
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China.
| |
Collapse
|
12
|
Ma Y, Liu S, Cui L, Fei Q, Wang Q. Turning food waste to microbial lipid towards a superb economic and environmental sustainability: An innovative integrated biological route. ENVIRONMENTAL RESEARCH 2024; 255:119125. [PMID: 38740293 DOI: 10.1016/j.envres.2024.119125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
With the drastic growth of the economic and population, the global energy requirement is on the rise, and massive human and material resources have been put into the development of alternative and renewable energy sources. Biodiesel has been recognized as a green and sustainable alternative energy, but the raw materials-associated source and cost makes it difficult to achieve large-scale commercial production. Microbial lipids (ML) produced by oleaginous microbes have attracted more and more topics as feedstocks for biodiesel production because of their unique advantages (fast growth cycle, small footprint and so on). However, there are still many problems and challenges ahead towards commercialization of ML-based biodiesel, especially the cost of feedstock for ML production. Food waste (FW) rich in organic matters and nutrients is an excellent and almost zero-cost feedstock for ML production. However, current biological routes of FW-based ML production have some defects, which make it impossible to achieve full industrialization at present. Therefore, this review intends to provide a critical and comprehensive analysis of current biological routes of FW-based ML production with the focus on the challenges and solutions forward. The biological routes towards future FW-based ML production must be able to concurrently achieve economic feasibility and environmental sustainability. On this condition, an innovative integrated biological route for FW-based ML production has thus been put forward, which is also elucidated on its economic and environmental sustainability. Moreover, the prospective advantages, limitations and challenges for future scale-up of FW-based ML production have also been outlined, together with the perspectives and directions forward.
Collapse
Affiliation(s)
- Yingqun Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Shiman Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lihui Cui
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
13
|
Yin L, Zhou A, Wei Y, Varrone C, Li D, Luo J, He Z, Liu W, Yue X. Deep insights into the roles and microbial ecological mechanisms behind waste activated sludge digestion triggered by persulfate oxidation activated through multiple modes. ENVIRONMENTAL RESEARCH 2024; 252:118905. [PMID: 38604480 DOI: 10.1016/j.envres.2024.118905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Persulfate oxidation (PS) is widely employed as a promising alternative for waste activated sludge pretreatment due to the capability of generating free radicals. The product differences and microbiological mechanisms by which PS activation triggers WAS digestion through multiple modes need to be further investigated. This study comprehensively investigated the effects of persulfate oxidation activated through multiple modes, i.e., ferrous, zero-valent iron (ZVI), ultraviolet (UV) and heat, on the performance of sludge digestion. Results showed that PS_ZVI significantly accelerated the methane production rate to 12.02 mL/g VSS. By contrast, PS_Heat promoted the sludge acidification and gained the maximum short-chain fatty acids (SCFAs) yield (277.11 ± 7.81 mg COD/g VSS), which was 3.41-fold compared to that in PS_ZVI. Moreover, ferrous and ZVI activated PS achieved the oriented conversion of acetate, the proportions of which took 73% and 78%, respectively. MiSeq sequencing results revealed that PS_Heat and PS_UV evidently enriched anaerobic fermentation bacteria (AFB) (i.e., Macellibacteroides and Clostridium XlVa). However, PS_Ferrous and PS_ZVI facilitated the enrichment of Woesearchaeota and methanogens. Furthermore, molecular ecological network and mantel test revealed the intrinsic interactions among the multiple functional microbes and environmental variables. The homo-acetogens and sulfate-reducing bacterial had potential cooperative and symbiotic relationships with AFB, while the nitrate-reducing bacteria displayed distinguishing ecological niches. Suitable activation modes for PS pretreatments resulted in an upregulation of genes expression responsible for digestion. This study established a scientific foundation for the application of sulfate radical-based oxidation on energy or high value-added chemicals recovery from waste residues.
Collapse
Affiliation(s)
- Lijiao Yin
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China.
| | - Yaoli Wei
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Cristiano Varrone
- Department of Chemistry and BioScience, Aalborg University, Copenhagen, Denmark
| | - Dengfei Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jingyang Luo
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhangwei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wenzong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518005, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
14
|
Jiang J, Guo T, Wang J, Sun A, Chen X, Xu X, Dai S, Qin Z. A novel microbial community restructuring strategy for enhanced hydrogen production using multiple pretreatments and CSTR operation. ENVIRONMENTAL RESEARCH 2024; 251:118725. [PMID: 38518915 DOI: 10.1016/j.envres.2024.118725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
To achieve rapid enrichment of the targeted hydrogen-producing bacterial population and reconstruction of the microbial community in the biological hydrogen-producing reactor, the activated sludge underwent multiple pretreatments using micro-aeration, alkaline treatment, and heat treatment. The activated sludge obtained from the multiple pretreatments was inoculated into the continuous stirred tank reactor (CSTR) for continuous operations. The community structure alteration and hydrogen-producing capability of the activated sludge were analyzed throughout the operation of the reactor. We found that the primary phyla in the activated sludge population shifted to Proteobacteria, Firmicutes, and Bacteroidetes, which collectively accounted for 96.69% after undergoing several pretreatments. This suggests that the multiple pretreatments facilitated in achieving the selective enrichment of the fermentation hydrogen-producing microorganisms in the activated sludge. The CSTR start-up and continuous operation of the biological hydrogen production reactor resulted in the reactor entering a highly efficient hydrogen production stage at influent COD concentrations of 4000 mg/L and 5000 mg/L, with the highest hydrogen production rate reaching 8.19 L/d and 9.33 L/d, respectively. The main genus present during the efficient hydrogen production stage in the reactor was Ethanoligenens, accounting for up to 33% of the total population. Ethanoligenens exhibited autoaggregation capabilities and a superior capacity for hydrogen production, leading to its prevalence in the reactor and contribution to efficient hydrogen production. During high-efficiency hydrogen production, flora associated with hydrogen production exhibited up to 46.95% total relative abundance. In addition, redundancy analysis (RDA) indicated that effluent pH and COD influenced the distribution of the primary hydrogen-producing bacteria, including Ethanoligenens, Raoultella, and Pectinatus, as well as other low abundant hydrogen-producing bacteria in the activated sludge. The data indicates that the multiple pretreatments and reactor's operation has successfully enriched the hydrogen-producing genera and changed the community structure of microbial hydrogen production.
Collapse
Affiliation(s)
- Jishan Jiang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tielan Guo
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jingyuan Wang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ao Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xingping Chen
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoxiao Xu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
15
|
Sun S, Wang X, Cheng S, Lei Y, Sun W, Wang K, Li Z. A review of volatile fatty acids production from organic wastes: Intensification techniques and separation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121062. [PMID: 38735068 DOI: 10.1016/j.jenvman.2024.121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
High value-added products from organic waste fermentation have garnered increasing concern in modern society. VFAs are short-chain fatty acids, produced as intermediate products during the anaerobic fermentation of organic matter. VFAs can serve as an essential organic carbon source to produce substitutable fuels, microbial fats and oils, and synthetic biodegradable plastics et al. Extracting VFAs from the fermentation broths is a challenging task as the composition of suspensions is rather complex. In this paper, a comprehensive review of methods for VFAs production, extraction and separation are provided. Firstly, the methods to enhance VFAs production and significant operating parameters are briefly reviewed. Secondly, the evaluation and detailed discussion of various VFAs extraction and separation technologies, including membrane separation, complex extraction, and adsorption methods, are presented, highlighting their specific advantages and limitations. Finally, the challenges encountered by different separation technologies and novel approaches to enhance process performance are highlighted, providing theoretical guidance for recycling VFAs from organic wastes efficiently.
Collapse
Affiliation(s)
- Shushuang Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Xuemei Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Shikun Cheng
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Yuxin Lei
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Wenjin Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Kexin Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Zifu Li
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China; International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
16
|
Sun Z, Song X, Wu Y, Jie J, Zhang Z. Synergistic effects of peracetic acid and free ammonia pretreatment on anaerobic fermentation of waste activated sludge to promote short-chain fatty acid production for polyhydroxyalkanoate biosynthesis: Mechanisms and optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121078. [PMID: 38723503 DOI: 10.1016/j.jenvman.2024.121078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Peracetic acid (PAA) combined with free ammonia (FA) pretreatment can be utilized to promote anaerobic fermentation (AF) of waste activated sludge (WAS) to produce short-chain fatty acids (SCFAs), and the resulting SCFAs are desirable carbon sources (C-sources) for polyhydroxyalkanoate (PHA) biosynthesis. This work aimed to determine the optimum conditions for PAA + FA pretreatment of sludge AF and the feasibility of using anaerobic fermentation liquor (AFL) for PHA production. To reveal the mechanisms of integrated pretreatment, the impacts of PAA + FA pretreatment on different stages of sludge AF and changes in the microbial community structure were explored. The experimental results showed that the maximum SCFA yield reached 491.35 ± 6.02 mg COD/g VSS on day 5 after pretreatment with 0.1 g PAA/g VSS +70 mg FA/L, which was significantly greater than that resulting from PAA or FA pretreatment alone. The mechanism analysis showed that PAA + FA pretreatment promoted sludge solubilization but strongly inhibited methanogenesis. According to the analysis of the microbial community, PAA + FA pretreatment changed the microbial community structure and promoted the enrichment of bacteria related to hydrolysis and acidification, and Proteiniclasticum, Macellibacteroides and Petrimonas became the dominant hydrolytic and acidifying bacteria. Finally, after alkali treatment, the AFL was utilized for batch-mode PHA production, and a maximum PHA yield of 55.05 wt% was achieved after five operation periods.
Collapse
Affiliation(s)
- Zhaoxia Sun
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Xiulan Song
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Yuqi Wu
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China.
| | - Jifa Jie
- Wuhan Planning and Design Institute, Wuhan, 430010, PR China
| | - Zeqian Zhang
- Shanxi Transportation New Technology Development Co.,Ltd., Taiyuan, 030006, PR China
| |
Collapse
|
17
|
Zhong H, Wang Q, Wu M, Zhao P, Song W, Wang X. Anaerobic acidification membrane bioreactor operating at acidic condition for treating concentrated municipal wastewater: Performance and implication. BIORESOURCE TECHNOLOGY 2024; 399:130644. [PMID: 38552856 DOI: 10.1016/j.biortech.2024.130644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
To address the low-carbon treatment requirements for municipal wastewater, a novel anaerobic acidification membrane bioreactor (AAMBR) was developed for recovering organic matter in terms of volatile fatty acids (VFAs). While the AAMBR successfully generated VFAs from municipal wastewater through forward osmosis (FO) membrane concentration, its operation was limited to a single pH value of 10.0. Here, performance of the AAMBR operating at acidic condition was evaluated and compared with that at alkaline condition. The findings revealed that the AAMBR with pH 5.0 efficiently transformed organic matter into acetic acid, propionic acid, and butyric acid, resulting in a VFAs yield of 0.48 g/g-CODfeed. In comparison with the AAMBR at pH 10.0, this study achieved a similar VFAs yield, a lower fouling tendency, a lower loss of nutrients and a lower controlling cost. In conclusion, this study demonstrated that a pH of 5.0 is optimal for the AAMBR treating municipal wastewater.
Collapse
Affiliation(s)
- Huihui Zhong
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Qiming Wang
- Scientific Research Academy of GuangXi Environmental Protection, Nanning 530022, PR China
| | - Mengfei Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
18
|
Song L, Cai C, Lin C, Lv Y, Liu Y, Ye X, Liu M, Dai X. Enhanced lactic acid production from household food waste under hyperthermophilic conditions: Mechanisms and regulation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:57-65. [PMID: 38377769 DOI: 10.1016/j.wasman.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
An annual production of about 500 million tons of household food waste (HFW) has been documented, resulting in significant implications for human health and the environment in the absence of appropriate treatment. The anaerobic fermentation of HFW in an open system offers the potential to recover high value-added products, lactic acid (LA), thereby simultaneously addressing waste treatment and enhancing resource recovery efficiency. Most of LA fermentation studies have been conducted under mesophilic and thermophilic conditions, with limited research on the production of LA through anaerobic fermentation under hyperthermophilic conditions. This study aimed to produce LA through anaerobic fermentation from HFW under hyperthermophilic conditions (70 ± 1 °C), while varying pH values (5.0 ± 0.1, 7.0 ± 0.1, and 9.0 ± 0.1), and compare the results with LA production under mesophilic (35 ± 1 °C) and thermophilic (52 ± 1 °C) conditions. The findings of this study indicated that the combination of hyperthermophilic conditions and a neutral pH (pH7_70) yielded the highest concentration of LA, measuring at 17.75 ± 1.51 g/L. The mechanism underlying the high yield of LA at 70 °C was elucidated through the combined analysis of organics dissolution, enzymes activities, and 16S rRNA microbiome sequencing.
Collapse
Affiliation(s)
- Liang Song
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Chenhang Cai
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
19
|
Wu M, Liu X, Tu W, Xia J, Zou Y, Gong X, Yu P, Huang WE, Wang H. Deep insight into oriented propionate production from food waste: Microbiological interpretation and design practice. WATER RESEARCH 2023; 243:120399. [PMID: 37499537 DOI: 10.1016/j.watres.2023.120399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Using mixed microbial cultures (MMCs) for oriented volatile fatty acids (VFAs) refining in an open environment is a typical challenge due to the microbial diversiform and the process complexity. Especially for carbohydrate-rich waste (such as food waste), butyrate-type fermentation is usually dominant in a single-stage MMCs anaerobic process, while the production of odd-carbon VFAs (such as propionate) is difficult although it plays a significant role in chemicals industries. In this study, firstly, we gave a new perspective on the rationality of the oriented propionate production using MMCs with lactate as feedstock by conducting in-depth microbial informatics and reaction analysis. Secondly, we verified the feasibility of the "food waste-lactate-propionate" route to reverse the original butyrate-type fermentation situation and explore mechanisms for maintaining stability. In the first stage, a defined lactate fermentation microbiome was used to produce lactate-containing broth (80% of total chemical oxygen demand) at pH=4. In the second stage, an undomesticated undefined anaerobic microbiome was used to drive propionate production (45.26% ± 2.23% of total VFAs) under optimized conditions (C/N = 100:1-200:1 and pH=5.0). The low pH environment in the first stage enhanced the lactic acid bacteria to resist the invasion of non-functional flanking bacteria, making the community stable. In the second stage, the system maintained the propionate-type fermentation due to the absence of the ecological niche of the invasive lactic acid bacteria; The selection of propionate-producing specialists was a necessary but not sufficient condition for propionate-type fermentation. At last, this study proposed an enhanced engineering strategy framework for understanding elaborate MMCs fermentation.
Collapse
Affiliation(s)
- Menghan Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinning Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weiming Tu
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Juntao Xia
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yina Zou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang Gong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peng Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Hui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Yin Z, Wang J, Wang M, Liu J, Chen Z, Yang B, Zhu L, Yuan R, Zhou B, Chen H. Application and improvement methods of sludge alkaline fermentation liquid as a carbon source for biological nutrient removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162341. [PMID: 36828064 DOI: 10.1016/j.scitotenv.2023.162341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Alkaline fermentation can reduce the amount of waste activated sludge and prepare sludge alkaline fermentation liquid (SAFL) rich in short-chain fatty acids (SCFAs), which can be used as a high-quality carbon source for the biological nutrient removal (BNR) process. This review compiles the production method of SAFL and the progress of its application as a BNR carbon source. Compared with traditional carbon sources, SAFL has the advantages of higher efficiency and economy, and different operating conditions can influence the yield and structure of SCFAs in SAFL. SAFL can significantly improve the nutrient removal efficiency of the BNR process. Taking SAFL as the internal carbon source of BNR can simultaneously solve the problem of carbon source shortage and sludge treatment difficulties in wastewater treatment plants, and further reduce the operating cost. However, the alkaline fermentation process results in many refractory organics, ammonia and phosphate in SAFL, which reduces the availability of SAFL as a carbon source. Purifying SCFAs by removing nitrogen and phosphorus, directly extracting SCFAs, or increasing the amount of SCFAs in SAFL by co-fermentation or combining with other pretreatment methods, etc., are effective measures to improve the availability of SAFL.
Collapse
Affiliation(s)
- Zehui Yin
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jihong Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingran Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiandong Liu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, Suchdol 165 00, Czech Republic
| | - Boyu Yang
- Nanjing Academy of Resources and Ecology Sciences, No. 606, Ningliu Road, Jiangbei New District, 210044 Nanjing, China
| | - Lixin Zhu
- Sinopec Nanjing Chemical Industries Co., Ltd., No. 189, Geguan Road, Liuhe District, Jiangsu 210048, Nanjing, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
21
|
Castro-Fernandez A, Taboada-Santos A, Balboa S, Lema JM. Thermal hydrolysis pre-treatment has no positive influence on volatile fatty acids production from sewage sludge. BIORESOURCE TECHNOLOGY 2023; 376:128839. [PMID: 36906240 DOI: 10.1016/j.biortech.2023.128839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The study compares the potential to produce volatile fatty acids (VFA) from sewage sludge, both raw and thermally pre-treated in two modes of operation. In batch mode, raw sludge at pH 8 obtained the highest maximum VFA yield (0.41 g COD-VFA/g CODfed) whereas pre-treated sludge achieved a lower value (0.27 g COD-VFA/g CODfed). The operation of 5-L continuous reactors showed that thermal hydrolysis pre-treatment (THP) did not have any significant influence on VFA yields, averaging 15.1 % g COD-VFA/g COD with raw sludge and 16.6 % g COD-VFA/g COD with pre-treated one. Microbial community analysis showed that phylum Firmicutes was predominant in both reactors and that the enzymatic profiles involved in VFA production were very similar regardless of the substrate fed.
Collapse
Affiliation(s)
- Ander Castro-Fernandez
- CETAQUA, Water Technology Centre, A Vila da Auga, José Villar Granjel 33, E-15890, Santiago de Compostela, Spain; CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| | - Anton Taboada-Santos
- CETAQUA, Water Technology Centre, A Vila da Auga, José Villar Granjel 33, E-15890, Santiago de Compostela, Spain
| | - Sabela Balboa
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| |
Collapse
|
22
|
Zhang M, Zhang D, Du J, Zhou B, Wang D, Liu X, Yan C, Liang J, Zhou L. Enhancing propionic acid production in the acidogenic fermentation of food waste facilitated by a fungal mash under neutral pH. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116901. [PMID: 36481690 DOI: 10.1016/j.jenvman.2022.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Fungal mash derived from Aspergillus spp. is a green enzymatic additive for food waste (FW) valorization. In this study, the production of volatile fatty acids (VFAs) and the proportion of propionic acid (PA) in VFAs were increased by utilizing a complex enzyme (CE) obtained from Aspergillus oryzae. Results showed that CE addition significantly promoted SCOD concentration in the hydrolysis at a wide pH range from 4 to 9. In contrast, the production of VFAs was influenced by pH, and the highest yields of VFAs and PA were found at pH 7. At the CE dosage of 0.2 g/g VSS, the concentration of VFAs in the FW fermentation liquid reached 38.1 g COD/L with the PA proportion up to 42.7%, which increased by 107.9% and 63.7%, respectively, relative to that in the zero-dosage group. With CE continuing to be added, the C/N ratio declined, and the primary metabolic pathway was converted from acetic acid-type to PA-type. Further investigation of the dominant microbial communities and their metabolic capacities showed that the acrylate-mediated pathway was the potential metabolic reaction in PA-type fermentation. These results indicated that CE pretreatment was a feasible strategy to enhance the PA-rich fermentation of FW under neutral pH conditions.
Collapse
Affiliation(s)
- Mingjiang Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dejin Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Du
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China; Institute of Livestock Research, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Bo Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Liu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Yan
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianru Liang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| |
Collapse
|
23
|
Huo W, Fu X, Bao M, Ye R, Shao Y, Liu Y, Bi J, Shi X, Lu W. Strategy of electron acceptors for ethanol-driven chain elongation from kitchen waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157492. [PMID: 35870578 DOI: 10.1016/j.scitotenv.2022.157492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
A two-phase kitchen waste (KW) fermentation was proposed in the current study to enhance medium-chain fatty acids (MCFAs) production from kitchen waste. In particular, effect of acetate to butyrate ratio (ABR) on MCFAs production was investigated which can be regulated by different pH and organic loading during the acidification phase. Medium ABR (1.00) was obtained when pH is 5.5 and organic loading is 20 g VS/L in FW acidification fermentation. Subsequent chain elongation fermentation demonstrated that the highest yield of caproate 9.67 g/L with selectivity of 79 %, and highest ethanol conversion efficiency of 1.11 was achieved in medium ABR system. Microbial community study showed that medium ABR significantly enrich the functional bacteria especially Clostridium kluyveri. The study provides a new method for chain elongation enhancement without addition of other additives in kitchen waste fermentation system and gives a guide for the regulation of the short-chain fatty acids distribution in its acidification phase.
Collapse
Affiliation(s)
- Weizhong Huo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xindi Fu
- School of Environment, Tsinghua University, Beijing 100084, China; Everbright Environtech (China) Ltd., Nanjing 211102, China
| | - Menggang Bao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Rong Ye
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuchao Shao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanqing Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiangtao Bi
- School of Ecology and Environment, Ningxia University, Ningxia 750021, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
Zhao L, Zhang J, Xu Z, Cai S, Chen L, Cai T, Ji XM. Bioconversion of waste activated sludge hydrolysate into polyhydroxyalkanoates using Paracoccus sp. TOH: Volatile fatty acids generation and fermentation strategy. BIORESOURCE TECHNOLOGY 2022; 363:127939. [PMID: 36100183 DOI: 10.1016/j.biortech.2022.127939] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The expensive carbon matrix is a bottleneck restricting the industrialization of polyhydroxyalkanoates (PHAs). Volatile fatty acids (VFAs) derived from waste activated sludge via anaerobic fermentation might be alternative carbon matters for PHAs synthesis. In this study, the effect of enzymes on VFAs yields and the feasibility of the produced VFAs for PHAs fermentation by Paracoccus sp. TOH were investigated. The optimum cumulative VFAs concentration reached 4076.6 mg-COD·L-1 in the lysozyme treatment system. Correspondingly, the highest poly(3-hydroxybuturate-co-3-hydroxyvalerate) (PHBV) concentration (119.1 mg·L-1) containing 20.3 mol% 3-hydroxyvalerate was obtained. It proved that Paracoccus sp. TOH possesses the capability for PHBV accumulation. The functional hydrolytic-acidogenic microorganisms, such as Clostridium sensu stricto and Bacteroides sp. were accumulated. The functional genes encoding hydrolysis, carbohydrates metabolism, VFAs generation were enriched. This study offered a possible strategy for VFAs production and verified the feasibility of sludge hydrolysate as a high-quality carbon substrate for PHAs fermentation.
Collapse
Affiliation(s)
- Leizhen Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Cai
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Liwei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
Lin Q, Dong X, Luo J, Zeng Q, Ma J, Wang Z, Chen G, Guo G. Electrochemical pretreatment enhancing co-fermentation of waste activated sludge and food waste into volatile fatty acids: Performance, microbial community dynamics and metabolism. BIORESOURCE TECHNOLOGY 2022; 361:127736. [PMID: 35932947 DOI: 10.1016/j.biortech.2022.127736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 05/16/2023]
Abstract
Waste activated sludge (WAS) has low biodegradability that restricts acidogenic fermentation (AF), thereby limiting the high-value volatile fatty acids (VFAs) production. This study investigated an alternative electrochemical pretreatment (EPT) approach that can facilitate AF of WAS and food waste (FW) and therefore enhance VFAs production. The results showed through introducing 50 % volatile solid basis of FW (containing massive chloride) into WAS, a 60-min EPT produced reactive chlorine species (RCS), which diffused into WAS-FW inner layers resulting in cell lysis, therefore significantly promoted and accelerated WAS-FW disintegration, contributing to more soluble and biodegradable dissolved organic matter (DOM). Then during the subsequent 15-day acidogenic co-fermentation (Co-AF), the residual RCS (approximate 5 mg Cl2/L) also caused acidogenic bacteria (including Prevotella_7, Lactobacillus and Veillonella) gradually outcompeted methanogens due to their different tolerance to residual RCS. Consequently, the maximum VFAs yield of the WAS-FW Co-AF with EPT was 40.8 % higher than WAS-AF without EPT.
Collapse
Affiliation(s)
- Qingshan Lin
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Xinlei Dong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Zeng
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jie Ma
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China.
| |
Collapse
|
26
|
Lian T, Zhang W, Cao Q, Wang S, Dong H, Yin F. Improving production of lactic acid and volatile fatty acids from dairy cattle manure and corn straw silage: Effects of mixing ratios and temperature. BIORESOURCE TECHNOLOGY 2022; 359:127449. [PMID: 35697263 DOI: 10.1016/j.biortech.2022.127449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic co-fermentation (AcoF) of dairy cattle manure (DCM) and corn straw silage (CSS) for producing lactic acid (LA) and volatile fatty acids (VFAs) was investigated. Batch experiments were conducted at seven different DCM/CSS ratios and at mesophilic and thermophilic temperatures. Results indicated that the highest concentration of LA was 17.50 ± 0.70 g/L at DCM:CSS ratio of 1:3 and thermophilic temperature, while VFAs was 18.23 ± 2.45 g/L at mono-CSS fermentation and mesophilic temperature. High solubilization of thermophilic conditions contributed to LA accumulation in AcoF process. Presence of the CSS increased the relative abundance of Lactobacillus for LA production at thermophilic. Meanwhile, the abundance of Bifidobacterium was increased when CSS was added at mesophilic, which could conduce to VFAs production. This study provides a new route for enhancing the biotransformation of DCM and CSS into short-chain fatty acids, potentially bringing economic benefits to agricultural waste treatment.
Collapse
Affiliation(s)
- Tianjing Lian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
27
|
Zhang M, Zhang D, Wei Y, Zhou B, Yan C, Wang D, Liang J, Zhou L. Fungal mash enzymatic pretreatment combined with pH adjusting approach facilitates volatile fatty acids yield via a short-term anaerobic fermentation of food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 151:1-9. [PMID: 35914374 DOI: 10.1016/j.wasman.2022.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
As an alternative for commercial enzyme, crude enzyme of fungal mash could promote food waste (FW) hydrolysis, but its specific effects coupled pH adjusting on the production of volatile fatty acids (VFAs) remains unknown. The crude enzyme produced from an Aspergillus awamori, named complex-amylase (CA), was added to short-term anaerobic system of FW fermentation. Results showed that adding CA significantly improved the solubility and degradability of biodegradable and non-biodegradable organics in FW, where the SCOD concentration with adding CA increased by 116.9% relative to the control but a marginal enhancement on VFAs yield. In contrast, adding CA combined with adjusting pH 8 markedly increased the VFAs production to 32.0 g COD/L, almost 10 times as much as the control. Besides, pH adjusting altered the metabolic pathway from lactate-type to butyrate-type. Adding CA coupled pH adjusting significant increase the component of butyrate compared with pH adjusting alone. Moreover, microbial community analysis indicated that adding CA reinforced proportion of the butyrate-producing bacteria (e.g., Dialister) under basic conditions, thus enhancing the butyrate metabolic pathways. This study demonstrated that fungal mash pretreatment coupled pH conditioning could be an economical way to enhance VFAs yield for FW valorization during anaerobic fermentation.
Collapse
Affiliation(s)
- Mingjiang Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dejin Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yidan Wei
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Yan
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianru Liang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Naning 210095, China.
| |
Collapse
|
28
|
Qiao L, Zhang X, Pi S, Chang J, Dou X, Yan S, Song X, Chen Y, Zeng X, Zhu L, Xu C. Dietary supplementation with biogenic selenium nanoparticles alleviate oxidative stress-induced intestinal barrier dysfunction. NPJ Sci Food 2022; 6:30. [PMID: 35739196 PMCID: PMC9226128 DOI: 10.1038/s41538-022-00145-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Selenium (Se) is an essential micronutrient that promotes body health. Endemic Se deficiency is a major nutritional challenge worldwide. The low toxicity, high bioavailability, and unique properties of biogenic Se nanoparticles (SeNPs) allow them to be used as a therapeutic drug and Se nutritional supplement. This study was conducted to investigate the regulatory effects of dietary SeNPs supplementation on the oxidative stress-induced intestinal barrier dysfunction and its association with mitochondrial function and gut microbiota in mice. The effects of dietary SeNPs on intestinal barrier function and antioxidant capacity and its correlation with gut microbiota were further evaluated by a fecal microbiota transplantation experiment. The results showed that Se deficiency caused a redox imbalance, increased the levels of pro-inflammatory cytokines, altered the composition of the gut microbiota, and impaired mitochondrial structure and function, and intestinal barrier injury. Exogenous supplementation with biogenic SeNPs effectively alleviated diquat-induced intestinal barrier dysfunction by enhancing the antioxidant capacity, inhibiting the overproduction of reactive oxygen species (ROS), preventing the impairment of mitochondrial structure and function, regulating the immune response, maintaining intestinal microbiota homeostasis by regulating nuclear factor (erythroid-derived-2)-like 2 (Nrf2)-mediated NLR family pyrin domain containing 3 (NLRP3) signaling pathway. In addition, Se deficiency resulted in a gut microbiota phenotype that is more susceptible to diquat-induced intestinal barrier dysfunction. Supranutritional SeNPs intake can optimize the gut microbiota to protect against intestinal dysfunctions. This study demonstrates that dietary supplementation of SeNPs can prevent oxidative stress-induced intestinal barrier dysfunction through its regulation of mitochondria and gut microbiota.
Collapse
Affiliation(s)
- Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xinyi Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Shanyao Pi
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Shuqi Yan
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yue Chen
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Lixu Zhu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
29
|
Chen Y, Wu Y, Bian Y, Dong L, Zheng X, Chen Y. Long-term effects of copper nanoparticles on volatile fatty acids production from sludge fermentation: Roles of copper species and bacterial community structure. BIORESOURCE TECHNOLOGY 2022; 348:126789. [PMID: 35104652 DOI: 10.1016/j.biortech.2022.126789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The long-term effects of copper nanoparticles (Cu NPs) on volatile fatty acids (VFAs) production during the waste activated sludge (WAS) fermentation, and the underlying mechanisms regarding copper species distribution and bacterial community evolution were explored. The yield of VFAs in the control was 1086 mg COD/L, whereas those were inhibited by 11.1%, 56.0% and 83.1%, with 25, 50, and 100 mg/g-TSS Cu NPs, respectively. Further investigation indicated that Cu NPs severely affected hydrolysis and acidification of WAS in a dose-dependent manner, while had little impact on solubilization. Besides, Cu NPs enriched the acid-consuming anaerobe while reducing the acid-forming bacteria. The metabolic pathways, microbial function, and enzymatic activities involved were inhibited at all tested dosages. Moreover, soluble and acid-extractable fractions dominated the copper speciation, which were also the main factors inhibiting the VFA production. This study provides a new perspective to interpret the long-term impacts of Cu NPs on WAS fermentation.
Collapse
Affiliation(s)
- Yuexi Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yaozhi Bian
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lei Dong
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
30
|
Holtzapple MT, Wu H, Weimer PJ, Dalke R, Granda CB, Mai J, Urgun-Demirtas M. Microbial communities for valorizing biomass using the carboxylate platform to produce volatile fatty acids: A review. BIORESOURCE TECHNOLOGY 2022; 344:126253. [PMID: 34728351 DOI: 10.1016/j.biortech.2021.126253] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The carboxylate platform employs a diverse microbial consortium of anaerobes in which the methanogens are inhibited. Nearly all biomass components are digested to a mixture of C1-C8 monocarboxylic acids and their corresponding salts. The methane-arrested anaerobic digestion proceeds readily without needing to sterilize biomass or equipment. It accepts a wide range of feedstocks (e.g., agricultural residues, municipal solid waste, sewage sludge, animal manure, food waste, algae, and energy crops), and produces high product yields. This review highlights several important aspects of the platform, including its thermodynamic underpinnings, influences of inoculum source and operating conditions on product formation, and downstream chemical processes that convert the carboxylates to hydrocarbon fuels and oxygenated chemicals. This review further establishes the carboxylate platform as a viable and economical route to industrial biomass utilization.
Collapse
Affiliation(s)
- Mark T Holtzapple
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Haoran Wu
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA; Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Paul J Weimer
- Department of Bacteriology, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Rachel Dalke
- Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Cesar B Granda
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Jesse Mai
- Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Meltem Urgun-Demirtas
- Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA.
| |
Collapse
|