1
|
Wei L, Li Z, Hong T, Zhang Q, Luo L, Tang Y, Ji J, Kong J, Ding X. Electricity production and nutrient recovery from waste activated sludge via microbial fuel cell and subsequent struvite crystallization: Effect of low temperature thermo-alkaline pretreatment. BIORESOURCE TECHNOLOGY 2024; 414:131575. [PMID: 39370010 DOI: 10.1016/j.biortech.2024.131575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Microbial fuel cell (MFC) and subsequent struvite crystallization are available low-carbon environmental- friendly techniques for resource utilization of waste activated sludge (WAS). In this study, low temperature thermo-alkaline pretreatment (LTTAP) was innovatively proposed for enhancing MFC electricity generation and subsequent struvite crystallization from WAS. The results indicated that LTTAP at 75 °C and pH 10 not only substantially shortened the start-up time of MFC to 3-4 days, but also significantly increased maximum power density to 5.38 W/m3. Moreover, thermo-alkaline pretreated WAS effectively exhibited stable and high output voltage over long period, compared to unpretreated WAS. Furthermore, pretreated WAS can provide an effective pH buffering function for MFC operation. In addition, about 90 % of phosphate in the pretreated WAS supernatant was recovered by struvite crystallization. The findings herein provided a new route for enhancing electricity production and nutrient recovery from WAS, which can realize the full-scale applicationof WAS resource utilization.
Collapse
Affiliation(s)
- Lin Wei
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| | - Ziyue Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Tianqiu Hong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiang Zhang
- Instrumental Analysis Center, Hefei University of Technology, Hefei 230009, China
| | - Lei Luo
- College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yiming Tang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Junjie Ji
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Jianyu Kong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Xiaoke Ding
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
2
|
Chen Y, Ding W, Bai Y, Wang X, Shen N, Li L, Lu D, Zhou Y. Phosphorus release and realignment in anaerobic digestion of thermal hydrolysis pretreatment sludge - Masking effects from high ammonium. WATER RESEARCH 2024; 255:121488. [PMID: 38513371 DOI: 10.1016/j.watres.2024.121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/18/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Waste activated sludge (WAS) is a significant phosphorus (P) repository, and there is a growing interest in P recovery from WAS. Typically, the commercial technology for treating WAS involves thermal hydrolysis pretreatment (THP) coupled with anaerobic digestion (AD). However, there is ongoing debate regarding the transformation and distribution of P throughout this process. To address this, a long-term THP-AD process was operated in this study to comprehensively investigate P transformation and distribution. The results revealed that a substantial biodegradation of dissolved organic nitrogen (DON) raised the pH of the digestate to 8.3 during the AD process. This increased pH facilitated the dissolution of Al, leading to a reduction of 6.92 mg/L of NaOH-P. Simultaneously, sulfate reduction contributed to a decrease of 11.04 mg/L of Bipy-P in the solid. However, the reduction of Bipy-P and NaOH-P in the solid did not result in an improved P release to the supernatant. Conversely, a decrease of 23.60 mg/L P in the aqueous phase was observed after anaerobic digestion. The disappeared P was primarily precipitated with Mg and Ca, driven by the increased pH, and it contributed to the increase of HCl-P in the solid from 107.80 to 144.52 mg/L. These findings were further confirmed by results obtained from scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and solid-state 31P nuclear magnetic resonance (NMR) spectroscopy. This study provides valuable insights into the mechanisms of P transformation during THP-AD process that is nearly opposite from conventional AD system.
Collapse
Affiliation(s)
- Yun Chen
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Wei Ding
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Yu Bai
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Xiao Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Nan Shen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Lei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Dan Lu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
3
|
Xu H, Guo L, Gao M, Zhao Y, Jin C, Ji J, She Z. Comparison on anaerobic phosphorus release and recovery from waste activated sludge by different chemical pretreatment methods: Focus on struvite quality and benefit analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154110. [PMID: 35218825 DOI: 10.1016/j.scitotenv.2022.154110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus recovery from waste activated sludge (WAS) is expected to alleviate the shortage of phosphate rock and reduce eutrophication. In this study, acid, alkali and sodium polyacrylate (PAAS) were compared to enhance phosphorus release and recovery from WAS. During anaerobic fermentation (AF) stage, the optimal pretreated conditions for ortho-phosphate release were the pH of 4 (AF 12 h), 13 (AF 12 h) and 22.4 g PAAS/L (AF 24 h) with the phosphorus release efficiencies of 40.9%, 62.6% and 31.7%, respectively. Acid, alkali and PAAS addition were beneficial for apatite phosphorus (AP), non-apatite inorganic phosphorus (NAIP) and organic phosphorus (OP) release from WAS, respectively. Strong acidic (pH = 4) and alkaline (pH = 12 and 13) conditions inhibited the release of soluble ammonia, while PAAS would not have a negative impact on the release of soluble ammonia. By means of precipitation crystallization, the ortho-phosphate could be almost recovered after acid/alkali pretreatment compared with PAAS (88.9%) at optimal Mg/P molar ratio of 1.5:1. The XRD, FT-IR and SEM-EDX analyses confirmed the main component in the product was struvite. The purity of the struvite in the product recovered from acid (named PreAC, 78.9%) and alkali (named PreAL, 89.6%) pretreated sludge were higher than that of the PAAS (named PrePA, 72.3%) by elemental analysis. The mercury and chromium content existed in PreAC were above the Control Standards of Pollutants in Sludge for Agricultural Use, whereas detected heavy metal elements level of the PreAL and PrePA were below the standard. By means of cost analysis, acid/alkali pretreatment could obtain economic benefits compared with PAAS. Thus, those discoveries would broaden the phosphorus recovery way to serve in practice.
Collapse
Affiliation(s)
- Haiqing Xu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Junyuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|