1
|
Ran X, Wang T, Zhou M, Li Z, Wang H, Tsybekmitova GT, Guo J, Wang Y. A Novel Perspective on the Instability of Mainstream Partial Nitrification: The Niche Differentiation of Nitrifying Guilds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8922-8938. [PMID: 40294427 DOI: 10.1021/acs.est.5c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Short-cut biological nitrogen removal (sBNR) favors the paradigm shift toward energy-positive and carbon-neutral wastewater treatment processes. Partial nitrification (PN) is a key approach to provide nitrite for anammox or denitritation during sBNR, and its stability is the precondition for achieving robust nitrogen removal performance. However, maintaining a stable mainstream PN process has been a long-standing challenge. This review analyzes the mainstream PN process from a microbial ecology perspective, focusing on the niche differentiation among nitrifiers. First, we propose that mainstream PN systems are ecologically unstable, and the failure of the mainstream PN process due to the reactivation of nitrite-oxidizing bacteria (NOB) can be regarded as a behavior to restore system stabilization. Thus, maintaining mainstream PN systems primarily relies on enhancing the niche differentiation between ammonia-oxidizing bacteria (AOB) and NOB. We then summarize the realized niches of indigenous nitrifiers within nitrification systems and discuss their ecophysiological characteristics (e.g., cell structure and substrate affinity) that define their specific ecological niches. By comparing the niche breadths of AOB and NOB on various niche axes, we further discuss their niche differentiation and identify the different responses of AOB (resistance) and NOB (resilience) to exogenous perturbations. Finally, we propose outlook for achieving a stable mainstream PN process through an ecological lens. This review provides ecological insights into the instability of the mainstream PN process, which is intended to guide the derivation of optimized strategies from a single-factor approach to integrated solutions.
Collapse
Affiliation(s)
- Xiaochuan Ran
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Tong Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Mingda Zhou
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Zibin Li
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Gazhit Ts Tsybekmitova
- Institute of Natural Resources, Ecology and Cryology, Siberian Branch of Russian Academy Science, Nedorezova, 16a, Chita 672014, Russian Federation
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yayi Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| |
Collapse
|
2
|
Hu X, Yang H, Fang X, Liu X, Wang J, Wang X, Bai Y, Su B. Stable partial nitrification was achieved for nitrogen removal from municipal wastewater by gel immobilization: A pilot-scale study. J Environ Sci (China) 2025; 151:529-539. [PMID: 39481958 DOI: 10.1016/j.jes.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 11/03/2024]
Abstract
As an energy and carbon saving process for nitrogen removal from wastewater, the partial nitrification and denitrification process (PN/D) has been extensively researched. However, achieving stable PN in municipal wastewater has always been challenging. In this study, a gel immobilized PN/D nitrogen removal process (GI-PN/D) was established. A 94 days pilot-scale experiment was conducted using real municipal wastewater with an ammonia concentration of 43.5 ± 5.3 mg N/L at a temperature range of 11.3-28.7℃. The nitrogen removal performance and associated pathways, shifts in the microbial community as well as sludge yield were investigated. The results were as follows: the effluent TN and COD were 0.6 ± 0.4 mg/L and 31.1 ± 3.8 mg/L respectively, and the NAR exceeding 95%. GI-PN/D achieved deep nitrogen removal of municipal wastewater through stable PN without taking any other measures. The primary pathways for nitrogen removal were identified as denitrification, simultaneous nitrification-denitrification, and aerobic denitrification. High-throughput sequencing analysis revealed that the immobilized fillers facilitated the autonomous enrichment of functional bacteria in each reactor, effectively promoting the dominance and stability of the microbial communities. In addition, GI-PN/D had the characteristic of low sludge yield, with an average sludge yield of 0.029 kg SS/kg COD. This study provides an effective technical for nitrogen removal from municipal wastewater through PN.
Collapse
Affiliation(s)
- Xin Hu
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoyue Fang
- Beijing General Municipal Engineering Design & Research Institute Co., Ltd., Beijing 100044, China
| | - Xuyan Liu
- Hebei GEO University, Shijiazhuang 050031, China
| | - Jiawei Wang
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Xiaotong Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yongsheng Bai
- Beijing Drainage Group Co. Ltd., Beijing 100022, China
| | - Bojun Su
- Beijing Drainage Group Co. Ltd., Beijing 100022, China
| |
Collapse
|
3
|
Jia C, Li J, Li Z, Zhang L. Influence of high-load shocks on achieving mainstream partial nitrification: Microbial community succession. WATER RESEARCH X 2025; 27:100304. [PMID: 39911734 PMCID: PMC11794177 DOI: 10.1016/j.wroa.2025.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/24/2024] [Accepted: 01/12/2025] [Indexed: 02/07/2025]
Abstract
Driving microbial community succession through the regulation of operational strategies is crucial for achieving partial nitrification (PN) in municipal wastewater. However, at present, there is a decoupling between the strategic regulation of PN systems and the succession characteristics of the microbial community. This study examined the correlation between microbial community succession and PN performance under two high-load shocks (HLS1 and HLS2) treating actual sewage. During HLS1, the influent organic loading rate (OLR) and nitrogen loading rate (NLR) increased from 116.7 ± 37.7 to 219.7 ± 24.7 mg COD/(g VSS·d) and 0.21±0.02 to 0.33±0.02 kg N/m3/d respectively, with the nitrite concentration and nitrite accumulation ratio only reaching 11.7 ± 2.7 mg/L and 49.3 ± 13.9 %, respectively. During HLS2, the influent OLR and NLR increased from 123.5 ± 17.2 to 300.3 ± 49.2 mg COD/(g VSS·d) and 0.19±0.03 to 0.32±0.03 kg N/m3/d respectively, resulting in a nitrite accumulation ratio of 89.4 ± 10.7 %. The system achieved efficient PN performance and sustained for 124 days. High-throughput sequencing results showed that community diversity remained consistently high, and the community composition returned to its initial state following a minor succession during HLS1. During HLS2, the high-load shock reduced the richness and evenness of the microbial community. The community underwent succession in a new direction, leading to community composition and function changes. The results indicate that the realization, stabilization, and disruption of PN are influenced not only by operational parameters but also by microbial community structure.
Collapse
Affiliation(s)
- Chenjie Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhaoyang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
4
|
Fan Y, Shi K, Wang C. Mathematical modeling and experimental validation of a novel Circulating Oxygenation Biofilm Equipment (COBE) for the management of decentralized wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119792. [PMID: 38081087 DOI: 10.1016/j.jenvman.2023.119792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
The difficulties of management were the key barriers to the promotion of decentralized wastewater treatment in remote areas. In this study, a novel decentralized Circulating Oxygenation Biofilm Equipment (COBE) and its remote management potential based on mathematical modeling were investigated. The COBE is an integrated biofilm reactor that employs drippage aeration and enables oxygenation, filtration, and effluent processes to be controlled, thus providing convenience for controlling. The model for the COBE describing drippage aeration, comprehensive ammonia-related microbes, and corncob carbon source release process was studied to uncover the impacts of operational conditions on decentralized wastewater treatment in the COBE system. The equipment regulation parameter (circulating oxygenation ratio) was found to be linearly correlated with the oxygen mass transfer coefficient. This discovery enabled highly accurate prediction of COD, NH4-N, and TN concentrations in the equipment effluent at various scenarios. The comprehensive ammonia oxidation biological model indicated that the model could duplicate the actual situation of the succession of ammonia metabolizing related microorganisms. Comammox and ammonia-oxidizing archaea (AOA) dominated ammonia metabolism in this equipment rather than conventional ammonium-oxidizing bacteria (AOB). This study could contribute to the Internet of Things system construction of decentralized wastewater treatment equipment, and provide a solution for timely decentralized equipment management in remote areas.
Collapse
Affiliation(s)
- Yu Fan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kuangwei Shi
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Chengwen Wang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Zhang L, Lan S, Dou Q, Hao S, Wang Y, Wang X, Zhang R, Peng Y, Yang J. Metagenomic insights into responses of microbial population and key functional genes to fulvic acid during partial nitritation. J Environ Sci (China) 2023; 124:952-962. [PMID: 36182197 DOI: 10.1016/j.jes.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 06/16/2023]
Abstract
The long-term impact of fulvic acid (FA) on partial nitritation (PN) system was initially examined in this study. The obtained results revealed that the FA lower than 50 mg/L had negligible effect on the nitrite accumulation rate (NAR nearly 100%) and ammonium removal rate (ARR 56.85%), while FA over 50 mg/L decreased ARR from 56.85% to 0.7%. Sludge characteristics analysis found that appropriate FA (<50 mg/L) exposure promoted the settling performance and granulation of PN sludge by removing Bacteroidetes and accumulating Chloroflexi. The analysis of metagenomics suggested that the presence of limited FA (0-50 mg/L) stimulated the generation of NADH, which favors the denitrification and nitrite reduction. The negative impact of FA on the PN system could be divided into two stages. Initially, limited FA (50-120 mg/L) was decomposed by Anaerolineae to stimulate the growth and propagation of heterotrophic bacteria (Thauera). Increasing heterotrophs competed with AOB (Nitrosomonas) for dissolved oxygen, causing AOB to be eliminated and ARR to declined. Subsequently, when FA dosage was over 120 mg/L, Anaerolineae were inhibited and heterotrophic bacteria reduced, resulting in the abundance of AOB recovered. Nevertheless, the ammonium transformation pathway was suppressed because genes amoABC and hao were obviously reduced, leading to the deterioration of reactor performance. Overall, these results provide theoretical guidance for the practical application of PN for the treatment of FA-containing sewage.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Shuang Lan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yueping Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoxuan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ruoyan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiachun Yang
- Shuifa Shandong Water Development Group Co. Ltd., Shandong 274200, China
| |
Collapse
|
6
|
Fan Y, Tan X, Huang Y, Hao T, Chen H, Yi X, Li D, Pan Y, Li Y, Kong Z. Chemical oxygen demand and nitrogen removal from real membrane-manufacturing wastewater by a pilot-scale internal circulation reactor integrated with partial nitritation-anammox. BIORESOURCE TECHNOLOGY 2022; 364:128116. [PMID: 36244606 DOI: 10.1016/j.biortech.2022.128116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
A pilot-scale system integrating internal circulation and partial nitritation-anammox successfully treated real high-strength membrane-manufacturing wastewater in this study. With this pilot-scale system, a high chemical oxygen demand (COD) removal efficiency of 85 % and a nitrogen removal of 90 % are achieved at an organic loading rate of 6.0 kg COD/m3/d. The nitrogenous organic matters in the internal circulation zone are degraded into ammonia nitrogen. In the partial nitrification zone, nitrite accumulation is achieved, providing a suitable NH4+-N/NO2--N ratio for anammox reaction. Partial nitritation is achieved by maintaining an operational temperature at 30-35 °C, free ammonia concentration at 5-7 mg/L and dissolved oxygen at 0.4-0.7 mg/L with a reflux ratio of 150 %. The COD to nitrogen ratio in the internal circulation effluent is maintained below 3.0 to inhibit nitrite oxidizing bacteria. This study demonstrates that a pilot-scale system can efficiently remove organic matters and nitrogen from wastewater of membrane-manufacturing industry.
Collapse
Affiliation(s)
- Yuqin Fan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xinwei Tan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Xue Yi
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
7
|
Duan H, Watts S, Zheng M, Wang Z, Zhao J, Li H, Liu P, Dwyer J, McPhee P, Rattier M, Larsen E, Yuan Z, Hu S. Achieving robust mainstream nitrite shunt at pilot-scale with integrated sidestream sludge treatment and step-feed. WATER RESEARCH 2022; 223:119034. [PMID: 36067606 DOI: 10.1016/j.watres.2022.119034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
As a promising energy- and carbon efficient process for nitrogen removal from wastewater, mainstream nitrite shunt has been extensively researched. However, beyond the laboratory it is challenging to maintain stable performance by suppressing nitrite-oxidising bacteria (NOB). In this study, a pilot-scale reactor system receiving real sewage was operated in two stages for >850 days to evaluate two novel NOB suppression strategies for achieving nitrite shunt: i) sidestream sludge treatment based on alternating free nitrous acid (FNA) and free ammonia (FA) and ii) sidestream FNA/FA sludge treatment integrated with in-situ NOB suppression via step-feed. The results showed that, with sidestream sludge treatment alone, NOB developed resistance relatively quickly to the treatment, leading to unstable nitrite shunt. In contrast, robust nitrite shunt was achieved and stably maintained for more than a year when sidestream sludge treatment was integrated with a step-feed strategy. Kinetic analyses suggested that sludge treatment and step-feed worked in synergy, leading to stable NOB suppression. The integrated strategy demonstrated in this study removes a key barrier to the implementation of stable mainstream nitrite shunt.
Collapse
Affiliation(s)
- Haoran Duan
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Shane Watts
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jing Zhao
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Huijuan Li
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peng Liu
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jason Dwyer
- Urban Utilities, Brisbane, QLD, 4000, Australia
| | - Paul McPhee
- Urban Utilities, Brisbane, QLD, 4000, Australia
| | - Maxime Rattier
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Eloise Larsen
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
8
|
Qiu J, Li X, Peng Y, Jiang H. Advanced nitrogen removal from landfill leachate via a two-stage combined process of partial nitrification-Anammox (PNA) and partial denitrification-Anammox (PDA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151186. [PMID: 34699827 DOI: 10.1016/j.scitotenv.2021.151186] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
In this study, a two-stage combined process of partial nitrification-Anammox (PNA) and partial denitrification-Anammox (PDA) was established achieving advanced nitrogen removal from landfill leachate. The PNA sludge used to treat reject water adapted to the leachate in 37 days, resulting in fast start-up of the PNA process with a nitrogen removal rate (NRR) of 0.22 kgN/(m3·d). Partial denitrification (PD) was induced using sodium acetate and proceeded in a stepwise manner using sludge fermentation liquid (SFL), achieving a NO3--N to NO2--N transformation ratio (NTR) of 52.1 ± 1.1% within 16 days. PDA was established via the addition of mature Anammox biofilms. The nitrogen removal efficiency (NRE) of this system was 97.6 ± 1.5%, of which PNA and PDA contributed 74.8 ± 4.0% and 18.7 ± 4.1%, respectively. Nitrosomonas (2.6% in PNA), Thauera (16.0% in PDA) and Candidatus Brocadia (23.0% in PNA, 1.4% in PDA) were dominant in the two-stage system. This study provides valuable and novel insights, supporting the practical application of PNA-PDA processes in landfill sites.
Collapse
Affiliation(s)
- Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China..
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|