1
|
Paillet F, Crestey E, Gaval G, Haddad M, Lebars F, Nicolitch O, Camacho P. Utilization of dissolved CO 2 to control methane and acetate production in methanation reactor. BIORESOURCE TECHNOLOGY 2025; 416:131722. [PMID: 39489311 DOI: 10.1016/j.biortech.2024.131722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/10/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
This study investigated the influence of dissolved CO2 on the selection of metabolic pathway using a methanation membrane bioreactor supplied with H2/CO2. Various ratios of H2/CO2 were applied (3.3, 3.8, 4.0, 4.5, and 5.0 (v/v)) to manipulate dissolved CO2 levels in the medium. The findings revealed a correlation between the concentration of dissolved CO2 and the production of CH4 (positive) and acetate (negative). Specifically, at a dissolved concentration of CO2 above 2.0 ± 0.2 mmol/L, production of CH4 was favored. At the opposite, acetate production was favored at lower dissolved CO2 concentrations, with a maximum concentration of 1.9 g/L observed at 0.9 mmol/L of dissolved CO2. This study demonstrates that the modification of dissolved CO2 levels in a methanation bioreactor can provide a strategy for the selection of metabolic pathways and microbial communities, thereby offering a promising opportunity for optimizing the conversion of CO2 into high-value products such as CH4 and acetate.
Collapse
Affiliation(s)
- F Paillet
- SUEZ Groupe, CIRSEE, 38 rue du Président Wilson, 78 230 Le Pecq, France.
| | - E Crestey
- SUEZ Groupe, CIRSEE, 38 rue du Président Wilson, 78 230 Le Pecq, France
| | - G Gaval
- SUEZ Groupe, CIRSEE, 38 rue du Président Wilson, 78 230 Le Pecq, France
| | - M Haddad
- SUEZ International, SUEZ Engineering & Construction, Tour CB21 - 16 place de l'Iris, 92040 Paris La Défense, France
| | - F Lebars
- SUEZ Groupe, CIRSEE, 38 rue du Président Wilson, 78 230 Le Pecq, France
| | - O Nicolitch
- SUEZ Groupe, CIRSEE, 38 rue du Président Wilson, 78 230 Le Pecq, France
| | - P Camacho
- SUEZ Groupe, CIRSEE, 38 rue du Président Wilson, 78 230 Le Pecq, France
| |
Collapse
|
2
|
Abera GB, Trømborg E, Solli L, Walter JM, Wahid R, Govasmark E, Horn SJ, Aryal N, Feng L. Biofilm application for anaerobic digestion: a systematic review and an industrial scale case. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:145. [PMID: 39695822 DOI: 10.1186/s13068-024-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Biofilm is a syntrophic community of microorganisms enveloped by extracellular polymeric substances and displays remarkable adaptability to dynamic environments. Implementing biofilm in anaerobic digestion has been widely investigated and applied as it promotes microbial retention time and enhances the efficiency. Previous studies on anaerobic biofilm primarily focused on application in wastewater treatment, while its role has been significantly extended to accelerate the degradation of lignocellulosic biomass, improve gas-liquid mass transfer for biogas upgrading, or enhance resistance to inhibitors or toxic pollutants. This work comprehensively reviewed the current applications of biofilm in anaerobic digestion and focused on impacting factors, optimization strategies, reactor set-up, and microbial communities. Moreover, a full-scale biofilm reactor case from Norway is also reported. This review provides a state of-the- art insight on the role of biofilm in anaerobic digestion.
Collapse
Affiliation(s)
- Getachew Birhanu Abera
- Faculty of Environmental Science and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, Postbox 128, Shashemene, Ethiopia
| | - Erik Trømborg
- Faculty of Environmental Science and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
| | - Linn Solli
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway
| | | | - Radziah Wahid
- Antec Biogas As, Olaf Helsets Vei 5, 0694, Oslo, Norway
| | | | - Svein Jarle Horn
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
| | - Nabin Aryal
- Department of Process, Energy and Environmental Technology, University of South-Eastern Norway (USN), Campus Porsgrunn, Kjølnes Ring 56, 3918, Porsgrunn, Norway
| | - Lu Feng
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway.
| |
Collapse
|
3
|
Sieborg MU, Nielsen AKH, Ottosen LDM, Daasbjerg K, Kofoed MVW. Bio-integrated carbon capture and utilization: at the interface between capture chemistry and archaeal CO 2 reduction. Nat Commun 2024; 15:7492. [PMID: 39209831 PMCID: PMC11362324 DOI: 10.1038/s41467-024-51700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Carbon capture and utilization (CCU) covers an array of technologies for valorizing carbon dioxide (CO2). To date, most mature CCU technology conducted with capture agents operates against the CO2 gradient to desorb CO2 from capture agents, exhibiting high energy penalties and thermal degradation due to the requirement for thermal swings. This Perspective presents a concept of Bio-Integrated Carbon Capture and Utilization (BICCU), which utilizes methanogens for integrated release and conversion of CO2 captured with capture agents. BICCU hereby substitutes the energy-intensive desorption with microbial conversion of captured CO2 by the methanogenic CO2-reduction pathway, utilizing green hydrogen to generate non-fossil methane.
Collapse
Affiliation(s)
- Mads Ujarak Sieborg
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark
| | - Amalie Kirstine Hessellund Nielsen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark
- The Novo Nordisk Foundation CO₂ Research Center (CORC), Aarhus University, Aarhus C, Denmark
| | - Lars Ditlev Mørck Ottosen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark
- The Novo Nordisk Foundation CO₂ Research Center (CORC), Aarhus University, Aarhus C, Denmark
| | - Kim Daasbjerg
- The Novo Nordisk Foundation CO₂ Research Center (CORC), Aarhus University, Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus C, Denmark
| | - Michael Vedel Wegener Kofoed
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark.
- The Novo Nordisk Foundation CO₂ Research Center (CORC), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
4
|
Zhou L, Lai CY, Wu M, Guo J. Simultaneous Biogas Upgrading and Valuable Chemical Production Using Homoacetogens in a Membrane Biofilm Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12509-12519. [PMID: 38963393 DOI: 10.1021/acs.est.4c02021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Biogas produced from anaerobic digestion usually contains impurities, particularly with a high content of CO2 (15-60%), thus decreasing its caloric value and limiting its application as an energy source. H2-driven biogas upgrading using homoacetogens is a promising approach for upgrading biogas to biomethane and converting CO2 to acetate simultaneously. Herein, we developed a novel membrane biofilm reactor (MBfR) with H2 and biogas separately supplied via bubbleless hollow fiber membranes. The gas-permeable hollow fibers of the MBfR enabled high H2 and CO2 utilization efficiencies (∼98% and ∼97%, respectively) and achieved concurrent biomethane (∼94%) and acetate (∼450 mg/L/d) production. High-throughput 16S rRNA gene amplicon sequencing suggested that enriched microbial communities were dominated by Acetobacterium (38-48% relative abundance). In addition, reverse transcription quantitative PCR of the functional marker gene formyltetrahydrofolate synthetase showed that its expression level increased with increasing H2 and CO2 utilization efficiencies. These results indicate that Acetobacterium plays a key role in CO2 to acetate conversion. These findings are expected to facilitate energy-positive wastewater treatment and contribute to the development of a new solution to biogas upgrading.
Collapse
Affiliation(s)
- Linjie Zhou
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| |
Collapse
|
5
|
Li M, Zhao X, Wu K, Liang C, Liu J, Yang H, Wang C, Yang B, Yin F, Zhang W. Spiral-Pipe Gas Anaerobic Digester. ACS OMEGA 2024; 9:23202-23208. [PMID: 38854509 PMCID: PMC11154718 DOI: 10.1021/acsomega.3c08872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 06/11/2024]
Abstract
The reduction of carbon dioxide to methane using hydrogen is an important process in biogas production. However, designing gas anaerobic digesters (GADs) based on this reaction presents several challenges. In this study, we developed an innovative spiral-pipe gas anaerobic digester (SGAD) to increase the displacement distance between the bubbles, thus prolonging the gas retention time and facilitating the reduction of CO2 to CH4 via H2. The process was successfully demonstrated by using a CO2/H2 ratio of 1:3 and a gas-feeding rate of 3.9 L Lr -1 d-1. During the experiment, more than 98% of the CO2 and 96% of the H2 were consumed, resulting in biogas containing ca. 86-96% CH4. Additionally, we applied our proposed evaluation methodology for assessing GAD performance to evaluate the performance of the SGAD. This methodology serves as a reference for evaluating and designing GAD systems. The innovative design of the SGAD and the corresponding evaluation methodology offer new insights into the design of reactors.
Collapse
Affiliation(s)
- Minghao Li
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Xingling Zhao
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Kai Wu
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Chengyue Liang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Jing Liu
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Hong Yang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Changmei Wang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Bin Yang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Yunyu Technology Co., LTD, Kunming 650117, PR China
| | - Fang Yin
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Yunyu Technology Co., LTD, Kunming 650117, PR China
| | - Wudi Zhang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Yunyu Technology Co., LTD, Kunming 650117, PR China
| |
Collapse
|
6
|
Thapa A, Jo H, Han U, Cho SK. Ex-situ biomethanation for CO 2 valorization: State of the art, recent advances, challenges, and future prospective. Biotechnol Adv 2023; 68:108218. [PMID: 37481094 DOI: 10.1016/j.biotechadv.2023.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Ex-situ biomethanation is an emerging technology that facilitates the use of surplus renewable electricity and valorizes carbon dioxide (CO2) for biomethane production by hydrogenotrophic methanogens. This review offers an up-to-date overview of the current state of ex-situ biomethanation and thoroughly analyzes key operational parameters affecting hydrogen (H2) gas-liquid mass transfer and biomethanation performance, along with an in-depth discussion of the technical challenges. To the best of our knowledge, this is the first review article to discuss microbial community structure in liquid and biofilm phases and their responses after exposure to H2 starvation during ex-situ biomethanation. In addition, future research in areas such as reactor configuration and optimization of operational parameters for improving the H2 mass transfer rate, inhibiting opportunistic homoacetogens, integration of membrane technology, and use of conductive packing material is recommended to overcome challenges and improve the efficiency of ex-situ biomethanation. Furthermore, this review presents a techno-economic analysis for the future development and facilitation of industrial implementation. The insights presented in this review will offer useful information to identify state-of-the-art research trends and realize the full potential of this emerging technology for CO2 utilization and biomethane production.
Collapse
Affiliation(s)
- Ajay Thapa
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hongmok Jo
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Uijeong Han
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
7
|
Han Y, Yang P, Feng Y, Wang N, Yuan X, An J, Liu J, Li N, He W. Liquid-gas phase transition enables microbial electrolysis and H2-based membrane biofilm hybrid system to degrade organic pollution and achieve effective hydrogenotrophic denitrification of groundwater. CHEMOSPHERE 2023; 331:138819. [PMID: 37127198 DOI: 10.1016/j.chemosphere.2023.138819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Electron-donor Lacking was the limiting factor for the denitrification of oligotrophic groundwater and hydrogenotrophic denitrification provided an efficient approach without secondary pollution. In this study, a hybrid system with microbial electrolysis cell (MEC) assisted hydrogen-based membrane biofilm reactor (MBfR) was established for advanced groundwater denitrification. The liquid-gas phase transition prevented the potential pollution from organic wastes in MEC to groundwater, while the bubble-free diffusion of MBfR promoted hydrogen utilization efficiency. The negative-pressure extraction from MEC and the positive pressure for gas supply into MBfR increased the hydrogen proportion and current density of MEC, and improved the kinetic constant K of the denitrification reaction in MBfR. With actual groundwater, the MEC-MBfR hybrid system achieved a nitrate reduction of 97.8% with an effluent NO3--N of 2.2 ± 1.0 mg L-1. The hydrogenotrophic denitrifiers of Thauera, Pannonibacter, and Azonexus, dominated the denitrification biofilm on the membrane and elastic filler in MBfR.
Collapse
Affiliation(s)
- Yu Han
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Pinpin Yang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Xiaole Yuan
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jingkun An
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China.
| |
Collapse
|
8
|
Dong H, Cheng J, Yue L, Xia R, Chen Z, Zhou J. Perfluorocarbon nanoemulsions as hydrogen carriers to promote the biological conversion of hydrogen and carbon dioxide to methane. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
9
|
Antukh T, Lee I, Joo S, Kim H. Hydrogenotrophs-Based Biological Biogas Upgrading Technologies. Front Bioeng Biotechnol 2022; 10:833482. [PMID: 35557857 PMCID: PMC9085624 DOI: 10.3389/fbioe.2022.833482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Biogas produced from anaerobic digestion consists of 55–65% methane and 35–45% carbon dioxide, with an additional 1–2% of other impurities. To utilize biogas as renewable energy, a process called biogas upgrading is required. Biogas upgrading is the separation of methane from carbon dioxide and other impurities, and is performed to increase CH4 content to more than 95%, allowing heat to be secured at the natural gas level. The profitability of existing biogas technologies strongly depends on operation and maintenance costs. Conventional biogas upgrading technologies have many issues, such as unstable high-purity methane generation and high energy consumption. However, hydrogenotrophs-based biological biogas upgrading offers an advantage of converting CO2 in biogas directly into CH4 without additional processes. Thus, biological upgrading through applying hydrogenotrophic methanogens for the biological conversion of CO2 and H2 to CH4 receives growing attention due to its simplicity and high technological potential. This review analyzes the recent advance of hydrogenotrophs-based biomethanation processes, addressing their potential impact on public acceptance of biogas plants for the promotion of biogas production.
Collapse
Affiliation(s)
| | | | - Sunghee Joo
- *Correspondence: Sunghee Joo, ; Hyunook Kim,
| | - Hyunook Kim
- *Correspondence: Sunghee Joo, ; Hyunook Kim,
| |
Collapse
|
10
|
Ali Abd A, Roslee Othman M. Biogas upgrading to fuel grade methane using pressure swing adsorption: Parametric sensitivity analysis on an industrial scale. FUEL 2022; 308:121986. [DOI: 10.1016/j.fuel.2021.121986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Ayol A, Peixoto L, Keskin T, Abubackar HN. Reactor Designs and Configurations for Biological and Bioelectrochemical C1 Gas Conversion: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111683. [PMID: 34770196 PMCID: PMC8583215 DOI: 10.3390/ijerph182111683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Microbial C1 gas conversion technologies have developed into a potentially promising technology for converting waste gases (CO2, CO) into chemicals, fuels, and other materials. However, the mass transfer constraint of these poorly soluble substrates to microorganisms is an important challenge to maximize the efficiencies of the processes. These technologies have attracted significant scientific interest in recent years, and many reactor designs have been explored. Syngas fermentation and hydrogenotrophic methanation use molecular hydrogen as an electron donor. Furthermore, the sequestration of CO2 and the generation of valuable chemicals through the application of a biocathode in bioelectrochemical cells have been evaluated for their great potential to contribute to sustainability. Through a process termed microbial chain elongation, the product portfolio from C1 gas conversion may be expanded further by carefully driving microorganisms to perform acetogenesis, solventogenesis, and reverse β-oxidation. The purpose of this review is to provide an overview of the various kinds of bioreactors that are employed in these microbial C1 conversion processes.
Collapse
Affiliation(s)
- Azize Ayol
- Department of Environmental Engineering, Dokuz Eylul University, Izmir 35390, Turkey;
| | - Luciana Peixoto
- Centre of Biological Engineering (CEB), University of Minho, 4710-057 Braga, Portugal;
| | - Tugba Keskin
- Department of Environmental Protection Technologies, Izmir Democracy University, Izmir 35140, Turkey;
| | - Haris Nalakath Abubackar
- Chemical Engineering Laboratory, BIOENGIN Group, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, 15008 A Coruña, Spain
- Correspondence:
| |
Collapse
|