1
|
Zhang W, Zhang H, Shang Y, Luo Y, Wu H, Wu H. High-Yield Biosynthesis of 3-Hydroxypropionic Acid from Acetate in Metabolically Engineered Escherichia coli. ACS Synth Biol 2025; 14:1654-1666. [PMID: 40267313 DOI: 10.1021/acssynbio.5c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The third-generation biorefineries aimed at "carbon-negative" production of fuels and chemicals utilizing one-carbon molecules and renewable energy sources were raised to tackle the pressing climate change and food scarcity issues. Acetate derived from syngas fermentation, a viable nonfood carbon source, has recently been elevated in bulk chemicals biosynthesis. In this study, we successfully engineered Escherichia coli to produce 3-hydroxypropionic acid (3-HP) from acetate via the malonyl-CoA pathway. Initially, the constitutive promoter of the 3-HP biosynthetic pathway for efficient 3-HP production was screened in acetate-based medium. Then, efforts were focused on reducing the competition for malonyl-CoA by inhibiting the fatty acids (FAs) synthesis pathway. Furthermore, we enhanced the supply of NADPH and acetyl-CoA through cofactor engineering. The engineered strain ZWR18(M*DA) accumulated 5.53 g/L 3-HP, corresponding to a yield of 0.732 g/g, and achieved 97.60% of the theoretical yield. In whole-cell catalysis, ZWR18(M*DA) produced 23.89 g/L 3-HP with a yield of 0.734 g/g, reaching 97.87% of the theoretical yield. Utilizing syngas-derived acetate for whole-cell catalysis allowed ZWR18(M*DA) to accumulate 18.87 g/L 3-HP with a yield of 0.58 g/g. These results indicate that acetate from syngas can serve as a cost-effective and environmentally friendly alternative to traditional carbon sources, offering a sustainable biorefinery pathway for industrial biomanufacturing.
Collapse
Affiliation(s)
- Wenrui Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hongjun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yanzhe Shang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
2
|
Fei P, Zhang W, Shang Y, Hu P, Gu Y, Luo Y, Wu H. Carbon-negative bio-production of short-chain carboxylic acids (SCCAs) from syngas via the sequential two-stage bioprocess by Moorella thermoacetica and metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2025; 416:131714. [PMID: 39490540 DOI: 10.1016/j.biortech.2024.131714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Syngas can be efficiently converted to acetate by Moorella thermoacetica under anaerobic conditions, which is environmentally friendly. Coupled with acetate production from syngas, using acetate to synthesize value-added compounds such as short-chain carboxylic acids (SCCAs) becomes a negative-carbon process. Escherichia coli is engineered to utilize acetate as the sole carbon source to produce SCCAs. By knocking out some acetyltransferase genes, introducing exogenous pathway and additional cofactor engineering, the strains can synthesize 3.79 g/L of 3-hydroxypropionic acid (3-HP), 1.83 g/L of (R)-3-hydroxybutyric acid (R-3HB), and 2.31 g/L of butyrate. We used M. thermoacetica to produce acetate from syngas. Subsequently, all engineered E. coli strains were able to produce SCCAs from syngas-derived acetate. The titers of 3-HP, R-3HB, and butyrate are 3.75, 1.68, and 2.04 g/L, with carbon sequestration rates of 51.1, 26.3, and 38.1 %. This coupled bioprocess has great potential for producing a range of other value-added chemicals from syngas.
Collapse
Affiliation(s)
- Peng Fei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenrui Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yanzhe Shang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Peng Hu
- Shanghai GTLB Biotech Co., Ltd, 1688 North Guoguan Road, Shanghai 200438, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
3
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Chen J, Guo L, Zhang Y, Zhao M, Li M, Zhao Z, Qi Q, Xian M, Liu M, Zhao G. Metabolic Engineering of Escherichia coli for Bioproduction of ( R)-3-Hydroxybutyric Acid through a Three-Pronged Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39024463 DOI: 10.1021/acs.jafc.4c04123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
(R)-3-Hydroxybutyric acid (R-3HB) is an important chiral chemical with extensive applications in the agricultural, food, and chemical industries. The synthesis of R-3HB by microbial fermentation is of interest due to its remarkable stereoselectivity and economy. However, the low production of R-3HB failed to meet the needs of large-scale industrial production. In this study, an engineered strain for the efficient biosynthesis of R-3HB was constructed through a three-pronged approach encompassing biosynthetic pathway optimization, engineering of NADPH regenerators, and central metabolism regulation. The engineered strain Q5081 produced 75.7 g/L R-3HB, with a productivity of 1.26 g/L/h and a yield of 0.34 g/g glucose in fed-batch fermentation, showing the highest reported titer and productivity of R-3HB to date. We also performed transcriptome sequencing and annotation to illustrate the mechanism underlying the enhanced R-3HB production. The systematic metabolic engineering by a three-pronged approach demonstrated the feasibility of improving the biosynthesis, and the engineered strain Q5081 has the potential for widespread applications in the industrial production of R-3HB.
Collapse
Affiliation(s)
- Jinhong Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Likun Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ying Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Mohan Zhao
- Qingdao No. 2 Middle School, Qingdao 266061, China
| | - Meijie Li
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhe Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Gu P, Li F, Huang Z, Gao J. Application of Acetate as a Substrate for the Production of Value-Added Chemicals in Escherichia coli. Microorganisms 2024; 12:309. [PMID: 38399713 PMCID: PMC10891810 DOI: 10.3390/microorganisms12020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
At present, the production of the majority of valuable chemicals is dependent on the microbial fermentation of carbohydrate substrates. However, direct competition is a potential problem for microbial feedstocks that are also used within the food/feed industries. The use of alternative carbon sources, such as acetate, has therefore become a research focus. As a common organic acid, acetate can be generated from lignocellulosic biomass and C1 gases, as well as being a major byproduct in microbial fermentation, especially in the presence of an excess carbon source. As a model microorganism, Escherichia coli has been widely applied in the production of valuable chemicals using different carbon sources. Recently, several valuable chemicals (e.g., succinic acid, itaconic acid, isobutanol, and mevalonic acid) have been investigated for synthesis in E. coli using acetate as the sole carbon source. In this review, we summarize the acetate metabolic pathway in E. coli and recent research into the microbial production of chemical compounds in E. coli using acetate as the carbon source. Although microbial synthetic pathways for different compounds have been developed in E. coli, the production titer and yield are insufficient for commercial applications. Finally, we discuss the development prospects and challenges of using acetate for microbial fermentation.
Collapse
Affiliation(s)
- Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| | - Fangfang Li
- Yantai Food and Drug Control and Test Center, Yantai 264003, China;
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| |
Collapse
|
6
|
Zhu J, Liu W, Wang M, Di H, Lü C, Xu P, Gao C, Ma C. Poly-3-hydroxybutyrate production from acetate by recombinant Pseudomonas stutzeri with blocked L-leucine catabolism and enhanced growth in acetate. Front Bioeng Biotechnol 2023; 11:1297431. [PMID: 38026858 PMCID: PMC10663377 DOI: 10.3389/fbioe.2023.1297431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Acetate is a low-cost feedstock for the production of different bio-chemicals. Electrochemical reduction of CO2 into acetate and subsequent acetate fermentation is a promising method for transforming CO2 into value-added chemicals. However, the significant inhibitory effect of acetate on microbial growth remains a barrier for acetate-based biorefinery. In this study, the deletion of genes involved in L-leucine degradation was found to be beneficial for the growth of Pseudomonas stutzeri A1501 in acetate. P. stutzeri (Δpst_3217), in which the hydroxymethylglutaryl-CoA lyase catalyzing β-hydroxy-β-methylglutaryl-CoA into acetyl-CoA and acetoacetate was deleted, grew faster than other mutants and exhibited increased tolerance to acetate. Then, the genes phbCAB from Ralstonia eutropha H16 for poly-3-hydroxybutyrate (PHB) biosynthesis were overexpressed in P. stutzeri (∆pst_3217) and the recombinant strain P. stutzeri (∆pst_3217-phbCAB) can accumulate 0.11 g L-1 PHB from commercial acetate. Importantly, P. stutzeri (∆pst_3217-phbCAB) can also use CO2-derived acetate to produce PHB and the accumulated PHB accounted for 5.42% (w/w) of dried cell weight of P. stutzeri (∆pst_3217-phbCAB).
Collapse
Affiliation(s)
- Jieni Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mengjiao Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Haiyan Di
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
7
|
Gu P, Zhao S, Niu H, Li C, Jiang S, Zhou H, Li Q. Synthesis of isobutanol using acetate as sole carbon source in Escherichia coli. Microb Cell Fact 2023; 22:196. [PMID: 37759284 PMCID: PMC10537434 DOI: 10.1186/s12934-023-02197-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND With concerns about depletion of fossil fuel and environmental pollution, synthesis of biofuels such as isobutanol from low-cost substrate by microbial cell factories has attracted more and more attention. As one of the most promising carbon sources instead of food resources, acetate can be utilized by versatile microbes and converted into numerous valuable chemicals. RESULTS An isobutanol synthetic pathway using acetate as sole carbon source was constructed in E. coli. Pyruvate was designed to be generated via acetyl-CoA by pyruvate-ferredoxin oxidoreductase YdbK or anaplerotic pathway. Overexpression of transhydrogenase and NAD kinase increased the isobutanol titer of recombinant E. coli from 121.21 mg/L to 131.5 mg/L under batch cultivation. Further optimization of acetate supplement concentration achieved 157.05 mg/L isobutanol accumulation in WY002, representing the highest isobutanol titer by using acetate as sole carbon source. CONCLUSIONS The utilization of acetate as carbon source for microbial production of valuable chemicals such as isobutanol could reduce the consumption of food-based substrates and save production cost. Engineering strategies applied in this study will provide a useful reference for microbial production of pyruvate derived chemical compounds from acetate.
Collapse
Affiliation(s)
- Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Shuo Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hao Niu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Chengwei Li
- RZBC GROUP CO., LTD, Rizhao, 276800, Shandong, China
| | | | - Hao Zhou
- RZBC GROUP CO., LTD, Rizhao, 276800, Shandong, China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
8
|
Lu J, Wang Y, Xu M, Fei Q, Gu Y, Luo Y, Wu H. Efficient biosynthesis of 3-hydroxypropionic acid from ethanol in metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2022; 363:127907. [PMID: 36087655 DOI: 10.1016/j.biortech.2022.127907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Engineering microbial cell factories to convert CO2-based feedstock into chemicals and fuels provide a feasible carbon-neutral route for the third-generation biorefineries. Ethanol became one of the major products of syngas fermentation by engineered acetogens. The key building block chemical 3-hydroxypropionic acid (3-HP) can be synthesized from ethanol by the malonyl-CoA pathway with CO2 fixation. In this study, the effect of two ethanol consumption pathways on 3-HP synthesis were studied as well as the effect of TCA cycle, gluconeogenesis pathway, and transhydrogenase. And the 3-HP synthesis pathway was also optimized. The engineered strain synthesized 1.66 g/L of 3-HP with a yield of 0.24 g/g. Furthermore, the titer and the yield of 3-HP increased to 13.17 g/L and 0.57 g/g in the whole-cell biocatalysis system. This study indicated that ethanol as feedstock had the potential to synthesize 3-HP, which provided an alternative route for future biorefinery.
Collapse
Affiliation(s)
- Juefeng Lu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuying Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingcheng Xu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yang Gu
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
9
|
Chen X, Wang J, Wang R, Zhang D, Chu S, Yang X, Hayat K, Fan Z, Cao X, Ok YS, Zhou P. Insights into growth-promoting effect of nanomaterials: Using transcriptomics and metabolomics to reveal the molecular mechanisms of MWCNTs in enhancing hyperaccumulator under heavy metal(loid)s stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129640. [PMID: 35882170 DOI: 10.1016/j.jhazmat.2022.129640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes present potential applications in soil remediation, particularly in phytoremediation. Yet, how multi-walled carbon nanotubes (MWCNTs) induced hyperaccumulator growth at molecular level remains unclear. Here, physio-biochemical, transcriptomic, and metabolomic analyses were performed to determine the effect of MWCNTs on Solanum nigrum L. (S. nigrum) growth under cadmium and arsenic stresses. 500 mg/kg MWCNTs application significantly promoted S. nigrum growth, especially for root tissues. Specially, MWCNTs application yields 1.38-fold, 1.56-fold, and 1.37-fold enhancement in the shoot length, root length, and fresh biomass, respectively. Furthermore, MWCNTs significantly strengthened P and Fe absorption in roots, as well as the activities of antioxidative enzymes. Importantly, the transcriptomic analysis indicated that S. nigrum gene expression was sensitive to MWCNTs, and MWCNTs upregulated advantageous biological processes under heavy metal(loid)s stress. Besides, MWCNTs reprogramed metabolism that related to defense system, leading to accumulation of 4-hydroxyphenylpyruvic acid (amino acid), 4-hydroxycinnamic acid (xenobiotic), and (S)-abscisic acid (lipid). In addition, key common pathways of differentially expressed metabolites and genes, including "tyrosine metabolism" and "isoquinoline alkaloid biosynthesis" were selected via integrating transcriptome and metabolome analyses. Combined omics technologies, our findings provide molecular mechanisms of MWCNTs in promoting S. nigrum growth, and highlight potential application of MWCNTs in soil remediation.
Collapse
Affiliation(s)
- Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| |
Collapse
|
10
|
Liang X, Zhang Y. Controllable recovery and regeneration of bio-derived ionic liquid choline acetate for biomass processing via bipolar membrane electrodialysis-based methodology. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Yoon J, Bae J, Kang S, Cho BK, Oh MK. Poly-3-hydroxybutyrate production in acetate minimal medium using engineered Methylorubrum extorquens AM1. BIORESOURCE TECHNOLOGY 2022; 353:127127. [PMID: 35398538 DOI: 10.1016/j.biortech.2022.127127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Acetate is regarded as a sustainable microbial feedstock that is synthesized from biowastes such as synthesis gas (syngas), carbon dioxide, lignocellulose, or organic waste. In this study, Methylorubrum extorquens AM1 was engineered to improve the production of bioplastic poly-3-hydroxybutyrate (PHB) using acetate as the sole carbon source. To utilize acetate as a carbon source and methanol as an energy source, acs encoding acetyl-CoA synthetase and fdh from Burkholderia stabilis were overexpressed, while ftfL involved in the assimilation of methanol into formyl-tetrahydrofolate was deleted. The yields of biomass and PHB from acetate significantly improved, and the growth rate and PHB content of the bacteria increased. In addition, sustainability of the PHB production was demonstrated using acetate derived from carbon dioxide and syngas. This study shows that biopolymers could be synthesized efficiently using acetate as the sole carbon source through metabolic engineering and the supply of energy cofactors.
Collapse
Affiliation(s)
- Jihee Yoon
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seulgi Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Son J, Joo JC, Baritugo KA, Jeong S, Lee JY, Lim HJ, Lim SH, Yoo JI, Park SJ. Consolidated microbial production of four-, five-, and six-carbon organic acids from crop residues: Current status and perspectives. BIORESOURCE TECHNOLOGY 2022; 351:127001. [PMID: 35292386 DOI: 10.1016/j.biortech.2022.127001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The production of platform organic acids has been heavily dependent on petroleum-based industries. However, petrochemical-based industries that cannot guarantee a virtuous cycle of carbons released during various processes are now facing obsolescence because of the depletion of finite fossil fuel reserves and associated environmental pollutions. Thus, the transition into a circular economy in terms of the carbon footprint has been evaluated with the development of efficient microbial cell factories using renewable feedstocks. Herein, the recent progress on bio-based production of organic acids with four-, five-, and six-carbon backbones, including butyric acid and 3-hydroxybutyric acid (C4), 5-aminolevulinic acid and citramalic acid (C5), and hexanoic acid (C6), is discussed. Then, the current research on the production of C4-C6 organic acids is illustrated to suggest future directions for developing crop-residue based consolidated bioprocessing of C4-C6 organic acids using host strains with tailor-made capabilities.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seona Jeong
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
13
|
Lee J, Park HJ, Moon M, Lee JS, Min K. Recent progress and challenges in microbial polyhydroxybutyrate (PHB) production from CO 2 as a sustainable feedstock: A state-of-the-art review. BIORESOURCE TECHNOLOGY 2021; 339:125616. [PMID: 34304096 DOI: 10.1016/j.biortech.2021.125616] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 05/05/2023]
Abstract
The recalcitrance of petroleum-based plastics causes severe environmental problems and has accelerated research into production of biodegradable polymers from inexpensive and sustainable feedstocks. Various microorganisms are capable of producing Polyhydroxybutyrate (PHB), a representative biodegradable polymer, under nutrient-limited conditions, among which CO2-utilizing microorganisms are of primary interest. Herein, we discuss recent progress on bacterial strains including proteobacteria, purple non-sulfur bacteria, and cyanobacteria in terms of CO2-containing carbon sources, PHB-production capability, and genetic modification. In addition, this review introduces recent technical approaches used to improve PHB production from CO2 such as two-stage bioprocesses and bioelectrochemical systems. Challenges and future perspectives for the development of economically feasible PHB production are also discussed. Finally, this review might provide insights into the construction of a closed-carbon-loop to cope with climate change.
Collapse
Affiliation(s)
- Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Hyun June Park
- Department of Biotechnology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea.
| |
Collapse
|