1
|
Song W, Lu X, Han X, Qu Y. Enzymatic Properties of Cel5B and Cel7 A-2 from Penicillium oxalicum and Their Role in the Enzymatic Saccharification of Lignocellulose. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05285-2. [PMID: 40372654 DOI: 10.1007/s12010-025-05285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
Cellulase cocktails play a crucial role in enzymatic saccharification of lignocellulosic biomass, a critical step in sustainable biofuel production. However, the efficiency of cellulase cocktails remains suboptimal due to incomplete understanding of enzyme synergy. In this study, we aimed to enhance biomass hydrolysis by optimizing the synergistic action of recombinant Cel5B, an endoglucanase and Cel7A-2, cellobiohydrolase from Penicillium oxalicum within a reconstituted cellulase system. Both enzymes were successfully expressed, purified, and characterized to optimize their synergistic action. The enzymatic properties of both enzymes were assessed, revealing optimal activities at 55-65°C and pH 4.2-4.8. Their combined action significantly enhanced the hydrolysis of filter paper and corncob residues. Using a central composite design, enzyme ratios were optimized to 11.6% rCel7A-2, 23.7% rCel5B, and 31.7% β-glucosidase. This formulation achieved the predicted glucan conversion of 58.1% for corncob residue hydrolysis, with experimental validation yielding 57.2%, demonstrating a 98.5% agreement with the model. Compared to the that of the commercial cellulase produced from P. oxalicum (38.1%), the optimized process improved glucan conversion by 50.1%. These findings demonstrate the effectiveness of rational enzyme synergy optimization and provide valuable insights into the strategy for improving the lignocellulosic biomass saccharification efficiency of the cellulase system.
Collapse
Affiliation(s)
- Wenxia Song
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Xianqin Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaolong Han
- School of Life Science and Engineering, Jining University, Qufu, 273155, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
2
|
Ning YN, Tian D, Zhao S, Feng JX. Regulation of genes encoding polysaccharide-degrading enzymes in Penicillium. Appl Microbiol Biotechnol 2024; 108:16. [PMID: 38170318 DOI: 10.1007/s00253-023-12892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024]
Abstract
Penicillium fungi, including Penicillium oxalicum, can secrete a range of efficient plant-polysaccharide-degrading enzymes (PPDEs) that is very useful for sustainable bioproduction, using renewable plant biomass as feedstock. However, the low efficiency and high cost of PPDE production seriously hamper the industrialization of processes based on PPDEs. In Penicillium, the expression of PPDE genes is strictly regulated by a complex regulatory system and molecular breeding to modify this system is a promising way to improve fungal PPDE yields. In this mini-review, we present an update on recent research progress concerning PPDE distribution and function, the regulatory mechanism of PPDE biosynthesis, and molecular breeding to produce PPDE-hyperproducing Penicillium strains. This review will facilitate future development of fungal PPDE production through metabolic engineering and synthetic biology, thereby promoting PPDE industrial biorefinery applications. KEY POINTS: • This mini review summarizes PPDE distribution and function in Penicillium. • It updates progress on the regulatory mechanism of PPDE biosynthesis in Penicillium. • It updates progress on breeding of PPDE-hyperproducing Penicillium strains.
Collapse
Affiliation(s)
- Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
3
|
Zhao S, Zhang T, Hasunuma T, Kondo A, Zhao XQ, Feng JX. Every road leads to Rome: diverse biosynthetic regulation of plant cell wall-degrading enzymes in filamentous fungi Penicillium oxalicum and Trichoderma reesei. Crit Rev Biotechnol 2024; 44:1241-1261. [PMID: 38035670 DOI: 10.1080/07388551.2023.2280810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Cellulases and xylanases are plant cell wall-degrading enzymes (CWDEs) that are critical to sustainable bioproduction based on renewable lignocellulosic biomass to reduce carbon dioxide emission. Currently, these enzymes are mainly produced from filamentous fungi, especially Trichoderma reesei and Penicillium oxalicum. However, an in-depth comparison of these two producers has not been performed. Although both P. oxalicum and T. reesei harbor CWDE systems, they exhibit distinct features regulating the production of these enzymes, mainly through different transcriptional regulatory networks. This review presents the strikingly different modes of genome-wide regulation of cellulase and xylanase biosynthesis in P. oxalicum and T. reesei, including sugar transporters, signal transduction cascades, transcription factors, chromatin remodeling, and three-dimensional organization of chromosomes. In addition, different molecular breeding approaches employed, based on the understanding of the regulatory networks, are summarized. This review highlights the existence of very different regulatory modes leading to the efficient regulation of CWDE production in filamentous fungi, akin to the adage that "every road leads to Rome." An understanding of this divergence may help further improvements in fungal enzyme production through the metabolic engineering and synthetic biology of certain fungal species.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Hu Z, Liu Q, Ouyang B, Wang G, Wei C, Zhao X. Recent advances in genetic engineering to enhance plant-polysaccharide-degrading enzyme expression in Penicillium oxalicum: A brief review. Int J Biol Macromol 2024; 278:134775. [PMID: 39153674 DOI: 10.1016/j.ijbiomac.2024.134775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
With the depletion of non-renewable fossil fuels, there has been an increasing emphasis on renewable biomass. Penicillium oxalicum is notable for its exceptional capacity to secrete a diverse array of enzymes that degrade plant polysaccharides into monosaccharides. These valuable monosaccharides can be harnessed in the production of bioethanol and other sustainable forms of energy. By enhancing the production of plant-polysaccharide-degrading enzymes (PPDEs) in P. oxalicum, we can optimize the utilization of plant biomass. This paper presents recent advances in augmenting PPDE expression in P. oxalicum through genetic engineering strategies involving protoplast preparation, transformation, and factors influencing PPDE gene expression.
Collapse
Affiliation(s)
- Ziyan Hu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Qiling Liu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Bei Ouyang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Guoping Wang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Chenyang Wei
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xihua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
5
|
Zhang Z, Xing J, Li X, Lu X, Liu G, Qu Y, Zhao J. Review of research progress on the production of cellulase from filamentous fungi. Int J Biol Macromol 2024; 277:134539. [PMID: 39122065 DOI: 10.1016/j.ijbiomac.2024.134539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Cellulases have been widely used in many fields such as animal feed, textile, food, lignocellulose bioconversion, etc. Efficient and low-cost production of cellulases is very important for its industrial application, especially in bioconversion of lignocellulosic biomass. Filamentous fungi are currently widely used in industrial cellulase production due to their ability to secrete large amounts of active free cellulases extracellularly. This review comprehensively summarized the research progress on cellulases from filamentous fungi in recent years, including filamentous fungi used for cellulase production and its modification strategies, enzyme compositions, characterization methods and application of fungal cellulase systems, and the production of fungal cellulase includes production processes, factors affecting cellulase production such as inducers, fermentation medium, process parameters and their control strategies. Also, the future perspectives and research topics in fungal cellulase production are presented in the end of the review. The review helps to deepen the understanding of the current status of fungal cellulases, thereby promoting the production technology progress and industrial application of filamentous fungal cellulase.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jing Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xianqin Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Zhang R, Cen Q, Hu W, Chen H, Hui F, Li J, Zeng X, Qin L. Metabolite profiling, antioxidant and anti-glycemic activities of Tartary buckwheat processed by solid-state fermentation( SSF)with Ganoderma lucidum. Food Chem X 2024; 22:101376. [PMID: 38665636 PMCID: PMC11043823 DOI: 10.1016/j.fochx.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to investigate the effect of Ganoderma lucidum fermentation on antioxidant and anti-glycemic activities of Tartary buckwheat. Xylanase, total cellulase (CMCase and FPase) and β-glucosidase in fermented Tartary buckwheat (FB) increased significantly to 242.06 U/g, 17.99 U/g and 8.67 U/g, respectively. And the polysaccharides, total phenols, flavonoids and triterpenoids, which is increased by 122.19%, 113.70%, 203.74%, and 123.27%, respectively. Metabolite differences between non-fermented Tartary buckwheat (NFB) and FB pointed out that 445 metabolites were substantially different, and were involved in related biological metabolic pathways. There was a considerable rise in the concentrations of hesperidin, xanthotoxol and quercetin 3-O-malonylglucoside by 240.21, 136.94 and 100.77 times (in Fold Change), respectively. The results showed that fermentation significantly increased the antioxidant and anti-glycemic activities of buckwheat. This study demonstrates that the fermentation of Ganoderma lucidum provides a new idea to enhance the health-promoting components and bioactivities of Tartary buckwheat.
Collapse
Affiliation(s)
- Rui Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Qin Cen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Wenkang Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Hongyan Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Fuyi Hui
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Jiamin Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| |
Collapse
|
7
|
Silva EM, Milagres AMF. Production of Extracellular Enzymes by Lentinula edodes Strains in Solid-State Fermentation on Lignocellulosic Biomass Sterilized by Physical and Chemical Methods. Curr Microbiol 2023; 80:395. [PMID: 37907667 DOI: 10.1007/s00284-023-03501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/19/2023] [Indexed: 11/02/2023]
Abstract
Two methods of sterilization of lignocellulosic biomass were performed in this study. Eucalypt waste (EW) supplemented with rice bran (RB) was added in the proportions 80:20 and 90:10 in dry weight. The compositions were sterilized by physical method (autoclaving) and by chemical method (H2O2). The production of extracellular enzymes by Lentinula edodes strains was compared within the two methods. Inactivation of catalase present in RB was achieved with 250 mM H2O2. The use of H2O2, when compared by physical method, favored high production of hydrolytic enzymes such as endoglucanase (1,600 IU/kg), twofold higher, β-glucosidase (1,000 IU/kg), fivefold higher, xylanase (55,000 IU/kg), threefold higher and β-xylosidase (225 IU/kg), similar results. Oxidative enzymes, MnP and laccase, were produced within a different profile between strains, with shorter times for laccase (2,200 IU/kg) by SJC in 45 days and MnP (2,000 IU/kg) by CCB-514 in 30 days. High production of extracellular enzymes is achieved by the use of the chemical method of sterilization of lignocellulosic biomass; in addition to no energy consumption, this process is carried out in a shorter execution time when compared to the physical process. The use of H2O2 in sterilization does not produce toxic compounds from the degradation of hemicellulose and cellulose such as furfural and hydroxy-methyl-furfural that cause inhibition of microorganisms and enzymes.
Collapse
Affiliation(s)
- Ezequiel Marcelino Silva
- Department of Biotechnology, Fundação Universidade Federal do Tocantins, Gurupi, TO, CEP 77 402 970, Brazil.
| | - Adriane Maria Ferreira Milagres
- Department of Biotechnology, Escola de Engenharia de Lorena - University of São Paulo, CP 116, Lorena, SP, CEP 12 602 810, Brazil
| |
Collapse
|
8
|
Ning YN, Tian D, Tan ML, Luo XM, Zhao S, Feng JX. Regulation of fungal raw-starch-degrading enzyme production depends on transcription factor phosphorylation and recruitment of the Mediator complex. Commun Biol 2023; 6:1032. [PMID: 37828083 PMCID: PMC10570388 DOI: 10.1038/s42003-023-05404-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Filamentous fungus can produce raw-starch-degrading enzyme (RSDE) that efficiently degrades raw starch below starch gelatinization temperature. Employment of RSDE in starch processing can save energy. A key putative transcription factor PoxRsrA (production of raw-starch-degrading enzyme regulation in Penicillium oxalicum) was identified to regulate RSDE production in P. oxalicum; however, its regulatory mechanism remains unclear. Here we show that PoxRsrA1434-1730 was the transcriptional activation domain, with essential residues, D1508, W1509 and M1510. SANT (SWI3, ADA2, N-CoR and TFIIIB)-like domain 1 (SANT1) bound to DNA at the sequence 5'-RHCDDGGD-3' in the promoter regions of genes encoding major amylases, with an essential residue, R866. SANT2 interacted with a putative 3-hydroxyisobutyryl-CoA hydrolase, which suppressed phosphorylation at tyrosines Y1127 and Y1170 of PoxRsrA901-1360, thereby inhibiting RSDE biosynthesis. PoxRsrA1135-1439 regulated mycelial sporulation by interacting with Mediator subunit Med6, whereas PoxRsrA1440-1794 regulated RSDE biosynthesis by binding to Med31. Overexpression of PoxRsrA increased sporulation and RSDE production. These findings provide insights into the regulatory mechanisms of fungal RSDE biosynthesis.
Collapse
Affiliation(s)
- Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China
| | - Man-Li Tan
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China
| | - Xue-Mei Luo
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
9
|
Su H, Lin J. Biosynthesis pathways of expanding carbon chains for producing advanced biofuels. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:109. [PMID: 37400889 DOI: 10.1186/s13068-023-02340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/11/2023] [Indexed: 07/05/2023]
Abstract
Because the thermodynamic property is closer to gasoline, advanced biofuels (C ≥ 6) are appealing for replacing non-renewable fossil fuels using biosynthesis method that has presented a promising approach. Synthesizing advanced biofuels (C ≥ 6), in general, requires the expansion of carbon chains from three carbon atoms to more than six carbon atoms. Despite some specific biosynthesis pathways that have been developed in recent years, adequate summary is still lacking on how to obtain an effective metabolic pathway. Review of biosynthesis pathways for expanding carbon chains will be conducive to selecting, optimizing and discovering novel synthetic route to obtain new advanced biofuels. Herein, we first highlighted challenges on expanding carbon chains, followed by presentation of two biosynthesis strategies and review of three different types of biosynthesis pathways of carbon chain expansion for synthesizing advanced biofuels. Finally, we provided an outlook for the introduction of gene-editing technology in the development of new biosynthesis pathways of carbon chain expansion.
Collapse
Affiliation(s)
- Haifeng Su
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural and Resources, Xian, 710075, Shanxi, China
| | - JiaFu Lin
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
10
|
Zhao S, Wang JX, Hou R, Ning YN, Chen ZX, Liu Q, Luo XM, Feng JX. Novel Transcription Factor CXRD Regulates Cellulase and Xylanase Biosynthesis in Penicillium oxalicum under Solid-State Fermentation. Appl Environ Microbiol 2023; 89:e0036023. [PMID: 37191516 PMCID: PMC10305053 DOI: 10.1128/aem.00360-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
Penicillium oxalicum produces an integrated, extracellular cellulase and xylanase system, strictly regulated by several transcription factors. However, the understanding of the regulatory mechanism of cellulase and xylanase biosynthesis in P. oxalicum is limited, particularly under solid-state fermentation (SSF) conditions. In our study, deletion of a novel gene, cxrD (cellulolytic and xylanolytic regulator D), resulted in 49.3 to 2,230% enhanced production of cellulase and xylanase, except for 75.0% less xylanase at 2 days, compared with the P. oxalicum parental strain, when cultured on solid medium containing wheat bran plus rice straw for 2 to 4 days after transfer from glucose. In addition, the deletion of cxrD delayed conidiospore formation, leading to 45.1 to 81.8% reduced asexual spore production and altered mycelial accumulation to various extents. Comparative transcriptomics and real-time quantitative reverse transcription-PCR found that CXRD dynamically regulated the expression of major cellulase and xylanase genes and conidiation-regulatory gene brlA under SSF. In vitro electrophoretic mobility shift assays demonstrated that CXRD bound to the promoter regions of these genes. The core DNA sequence 5'-CYGTSW-3' was identified to be specifically bound by CXRD. These findings will contribute to understanding the molecular mechanism of negative regulation of fungal cellulase and xylanase biosynthesis under SSF. IMPORTANCE Application of plant cell wall-degrading enzymes (CWDEs) as catalysts in biorefining of lignocellulosic biomass into bioproducts and biofuels reduces both chemical waste production and carbon footprint. The filamentous fungus Penicillium oxalicum can secrete integrated CWDEs, with potential for industrial application. Solid-state fermentation (SSF), simulating the natural habitat of soil fungi, such as P. oxalicum, is used for CWDE production, but a limited understanding of CWDE biosynthesis hampers the improvement of CWDE yields through synthetic biology. Here, we identified a novel transcription factor CXRD, which negatively regulates the biosynthesis of cellulase and xylanase in P. oxalicum under SSF, providing a potential target for genetic engineering to improve CWDE production.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| | - Jiu-Xiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| | - Run Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| | - Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| | - Zhao-Xing Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| | - Qi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
11
|
Zhang T, Li HZ, Li WT, Tian D, Ning YN, Liang X, Tan J, Zhao YH, Luo XM, Feng JX, Zhao S. Kinase POGSK-3β modulates fungal plant polysaccharide-degrading enzyme production and development. Appl Microbiol Biotechnol 2023; 107:3605-3620. [PMID: 37119203 DOI: 10.1007/s00253-023-12548-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
The filamentous fungus Penicillium oxalicum secretes integrative plant polysaccharide-degrading enzymes (PPDEs) applicable to biotechnology. Glycogen synthase kinase-3β (GSK-3β) mediates various cellular processes in eukaryotic cells, but the regulatory mechanisms of PPDE biosynthesis in filamentous fungi remain poorly understood. In this study, POGSK-3β (POX_c04478), a homolog of GSK-3β in P. oxalicum, was characterised using biochemical, microbiological and omics approaches. Knockdown of POGSK-3β in P. oxalicum using a copper-responsive promoter replacement system led to 53.5 - 63.6%, 79.0 - 92.8% and 76.8 - 94.7% decreases in the production of filter paper cellulase, soluble starch-degrading enzyme and raw starch-degrading enzyme, respectively, compared with the parental strain ΔKu70. POGSK-3β promoted mycelial growth and conidiation. Transcriptomic profiling and real-time quantitative reverse transcription PCR analyses revealed that POGSK-3β dynamically regulated the expression of genes encoding major PPDEs, as well as fungal development-associated genes. The results broadened our understanding of the regulatory functions of GKS-3β and provided a promising target for genetic engineering to improve PPDE production in filamentous fungi. KEY POINTS: • The roles of glycogen synthase kinase-3β were investigated in P. oxalicum. • POGSK-3β regulated PPDE production, mycelial growth and conidiation. • POGSK-3β controlled the expression of major PPDE genes and regulatory genes.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
- College of Food and Quality Engineering, Nanning University, Nanning, 530200, Guangxi, China
| | - Han-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wen-Tong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jing Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yan-Hao Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
12
|
Hassoun A, Bekhit AED, Jambrak AR, Regenstein JM, Chemat F, Morton JD, Gudjónsdóttir M, Carpena M, Prieto MA, Varela P, Arshad RN, Aadil RM, Bhat Z, Ueland Ø. The fourth industrial revolution in the food industry-part II: Emerging food trends. Crit Rev Food Sci Nutr 2022; 64:407-437. [PMID: 35930319 DOI: 10.1080/10408398.2022.2106472] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The food industry has recently been under unprecedented pressure due to major global challenges, such as climate change, exponential increase in world population and urbanization, and the worldwide spread of new diseases and pandemics, such as the COVID-19. The fourth industrial revolution (Industry 4.0) has been gaining momentum since 2015 and has revolutionized the way in which food is produced, transported, stored, perceived, and consumed worldwide, leading to the emergence of new food trends. After reviewing Industry 4.0 technologies (e.g. artificial intelligence, smart sensors, robotics, blockchain, and the Internet of Things) in Part I of this work (Hassoun, Aït-Kaddour, et al. 2022. The fourth industrial revolution in the food industry-Part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition, 1-17.), this complimentary review will focus on emerging food trends (such as fortified and functional foods, additive manufacturing technologies, cultured meat, precision fermentation, and personalized food) and their connection with Industry 4.0 innovations. Implementation of new food trends has been associated with recent advances in Industry 4.0 technologies, enabling a range of new possibilities. The results show several positive food trends that reflect increased awareness of food chain actors of the food-related health and environmental impacts of food systems. Emergence of other food trends and higher consumer interest and engagement in the transition toward sustainable food development and innovative green strategies are expected in the future.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian AcademicExpertise (SAE), Gaziantep, Turkey
| | | | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Farid Chemat
- Green Extraction Team, INRAE, Avignon University, Avignon, France
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - María Gudjónsdóttir
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - María Carpena
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Miguel A Prieto
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Paula Varela
- Fisheries and Aquaculture Research, Nofima - Norwegian Institute of Food, Ås, Norway
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Zuhaib Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| | - Øydis Ueland
- Fisheries and Aquaculture Research, Nofima - Norwegian Institute of Food, Ås, Norway
| |
Collapse
|
13
|
Zhao S, Mai RM, Zhang T, Feng XZ, Li WT, Wang WX, Luo XM, Feng JX. Simultaneous manipulation of transcriptional regulator CxrC and translational elongation factor eEF1A enhances the production of plant-biomass-degrading enzymes of Penicillium oxalicum. BIORESOURCE TECHNOLOGY 2022; 351:127058. [PMID: 35339654 DOI: 10.1016/j.biortech.2022.127058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Genetic engineering is an efficient approach to improve fungal bioproducts, but the specific targets are limited. In this study, it was found that the key transcription repressor CxrC of Penicillium oxalicum could physically interact with the translational elongation factor eEF1A that positively regulated the production of plant-biomass-degrading enzymes by the fungus under Avicel induction. Simultaneously deletion of the cxrC and overexpression of the eEF1A in the strain Δku70 resulted in 55.4%-314.6% higher production of cellulase, xylanase and raw-starch-degrading enzymes than that of the start strain Δku70. Transcript abundance of the genes encoding predominant cellulases, xylanases and raw-starch-degrading enzymes were significantly upregulated in the mutant ΔcxrC::eEF1A. The ΔcxrC::eEF1A enhanced saccharification efficiency of raw cassava flour by 9.3%-15.5% at early-middle stage of hydrolysis in comparison with Δku70. The obtained knowledges expanded the sources used as effective targets for increased production of plant-biomass-degrading enzymes by fungi.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rong-Ming Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiang-Zhao Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wen-Tong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wen-Xuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
14
|
Zhang T, Mai RM, Fang QQ, Ou JF, Mo LX, Tian D, Li CX, Gu LS, Luo XM, Feng JX, Zhao S. Regulatory function of the novel transcription factor CxrC in Penicillium oxalicum. Mol Microbiol 2021; 116:1512-1532. [PMID: 34797006 DOI: 10.1111/mmi.14843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Numerous transcription factors (TFs) in ascomycete fungi play crucial roles in cellular processes; however, how most of them function is poorly understood. Here, we identified and characterized a novel TF, CxrC (POX01387), acting downstream of the key TF CxrA, which is essential for plant-biomass-degrading-enzyme (PBDE) production in Penicillium oxalicum. Deletion of cxrC in P. oxalicum significantly affected the production of PBDEs, as well as mycelial growth and conidiospore production. CxrA directly repressed the expression of cxrC after about 12 hr following switch to Avicel culture. CxrC bound the promoters of major PBDE genes and genes involved in conidiospore development. CxrC was found to bind the TSSGTYR core sequence (S: C and G; Y: T and C; R: G and A) of the important cellulase genes cbh1 and eg1. Both N- and C-terminal peptides of CxrC and the CxrC phosphorylation were found to mediate its homodimerization. The conserved motif LPSVRSLLTP (65-74) in CxrC was found to be required for regulating cellulase production. This study reveals novel mechanisms of TF-mediated regulation of the expression of PBDE genes and genes involved in cellular processes in an ascomycete fungus.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Rong-Ming Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Qi-Qi Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Jian-Feng Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Li-Xiang Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Li-Sha Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| |
Collapse
|
15
|
Qian Y, Gao Z, Wang J, Wang C, Li G, Fu F, Guo J, Shan Y. Safety Evaluation and Whole Genome Sequencing of Aspergillus japonicas PJ01 Reveal Its Potential to Degrade Citrus Segments in Juice Processing. Foods 2021; 10:foods10081736. [PMID: 34441514 PMCID: PMC8391945 DOI: 10.3390/foods10081736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Aspergillus japonicas PJ01 (A. japonicas PJ01) is a strain isolated from the rotten branches. In previ-ous studies, it was shown that it can produce complex enzymes to degrade polysaccharide com-ponents. In this study, we evaluated the safety of its crude enzyme solution. Acute oral toxicity, subchronic toxicity, micronucleus and sperm malformation tests all validated the high biologi-cal safety for the crude enzymes. Secondly, we carried out the citrus segment degradation ex-periment of crude enzyme solution. Compared with the control group, the crude enzyme solu-tion of A. japonicas PJ01 can completely degrade the segments in 50 min, which provides the basis for enzymatic peeling during juice processing. The whole genome sequencing showed that the genome of A. japonicus PJ01 has a GC content of 51.37% with a size of 36204647 bp, and encoded 10070 genes. GO, COG, KEGG and CAZy databases were used in gene annotation analyses. Pathway enrichment showed many genes related to carbohydrate metabolism, rich in genes re-lated to pectinase, xylanase and carboxylcellulase. Therefore, the complex enzyme produced by A. japonicus PJ01 can be used in gizzard juice processing to achieve efficient enzymatic decapsu-lation.
Collapse
Affiliation(s)
- Yujiao Qian
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Jieyi Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
| | - Chen Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
| | - Gaoyang Li
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (Y.S.); (J.G.)
| | - Yang Shan
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (Y.S.); (J.G.)
| |
Collapse
|