1
|
Kim TH, Lee JS, Lee MJ, Lee J, Kim YK, Na JG, Oh BK. Two-stage continuous CO fermentation process strategy for high-titer bioethanol production using Clostridium autoethanogenum. BIORESOURCE TECHNOLOGY 2025; 421:132152. [PMID: 39921009 DOI: 10.1016/j.biortech.2025.132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
As global trends favor sustainable and cleaner energy options, the demand for bioethanol, a renewable energy source with lower carbon emissions than fossil fuels, is rising. This study introduces a novel two-stage process for producing high-concentration bioethanol from carbon monoxide using Clostridium autoethanogenum. The two-stage process consisted of 1) Stage I, the growth stage, and 2) Stage II, the production stage. Stage I was designed to cultivate high-density cells through a co-feeding strategy using fructose and carbon monoxide as carbon sources, supplemented by a cell recycling strategy. These cells are transferred to Stage II, optimized for continuous bioethanol production under favorable conditions. This process was successfully operated for over 104.0 days, achieving a peak cell density with an optical density at 600 nm of 49.489 and producing up to 41.176 g/L of bioethanol continuously.
Collapse
Affiliation(s)
- Tae-Hwan Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35, Baekbeom-ro, Mapo-Gu, Seoul 04107 Republic of Korea
| | - Jang-Seob Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35, Baekbeom-ro, Mapo-Gu, Seoul 04107 Republic of Korea
| | - Myeong-Jun Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35, Baekbeom-ro, Mapo-Gu, Seoul 04107 Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35, Baekbeom-ro, Mapo-Gu, Seoul 04107 Republic of Korea
| | - Young-Kee Kim
- Department of Chemical Engineering and Research Center of Chemical Technology, Hankyong National University, 327, Jungang-ro, Anseong-si, Gyeonggi-do 17579, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, 35, Baekbeom-ro, Mapo-Gu, Seoul 04107 Republic of Korea.
| | - Byung-Keun Oh
- Department of Chemical and Biomolecular Engineering, Sogang University, 35, Baekbeom-ro, Mapo-Gu, Seoul 04107 Republic of Korea.
| |
Collapse
|
2
|
Hill JD, Seo H, Papoutsakis ET. Acetogenic mixotrophy for carbon-neutral and carbon-negative production of chemicals. Curr Opin Biotechnol 2025; 93:103298. [PMID: 40157045 DOI: 10.1016/j.copbio.2025.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
Microbial conversion of renewable carbon sources into valuable chemicals can significantly reduce our reliance on fossil resources and decrease the carbon footprint of chemical manufacturing. Of emerging interest is anaerobic, nonphotosynthetic mixotrophy (ANP mixotrophy) that simultaneously converts renewable carbohydrates and C1 gases (CO2 and CO) into value-added chemical products in carbon-neutral and even carbon-negative fermentations. Despite significant advances in ANP mixotrophy over the past decade, several challenges remain. We discuss key challenges for carbon-neutral/negative ANP fermentations, notably the necessity of supplying additional electrons for reduced metabolite production, the slow adoption of genetic tools, uncertainties about carbon catabolite repression, and gas transfer limitations.
Collapse
Affiliation(s)
- John D Hill
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Hyeongmin Seo
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA.
| | | |
Collapse
|
3
|
Naveira-Pazos C, Veiga MC, Kennes C. Clostridium carboxidivorans and Rhodosporidium toruloides as a platform for the valorization of carbon dioxide to microbial oils. CHEMOSPHERE 2024; 365:143345. [PMID: 39277045 DOI: 10.1016/j.chemosphere.2024.143345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
There is growing scientific interest in oleaginous yeasts producing microbial oils as precursors of biofuels and potential substitutes for fossil fuels. Due to the high cost of substrates commonly metabolized by yeasts, volatile fatty acids (VFAs) are gaining interest as alternative cheap and sustainable carbon sources, which can be obtained from solid, liquid and gas pollutants. In this research, Rhodosporidium toruloides was proven to be able to accumulate microbial oils from VFAs obtained from the fermentation of syngas by Clostridium carboxidivorans. Using CO2 and CO as carbon sources from the syngas mixture and H2 as energy source, this acetogen produced, via the Wood-Ljungdahl pathway, a mixture of acetic, butyric and caproic acids. It was first revealed that R. toruloides exhibited minimal inhibition at concentrations below 12 g/L when exposed to a mixture of VFAs, which included acetic, butyric and even hexanoic acids. The yeast was then grown on the culture medium derived from the acetogenic fermentation of syngas. Between the two yeast strains tested of the same species, R. toruloides DSM 4444 reached a total VFAs consumption of 69.1 g/L, supplied by successive additions of acids to the reactor, yielding a maximum lipid content of 29.7% w/w cell. The lipid profile obtained in this case, in terms of abundance followed the order C18:1 > C16:0 ≥ C18:0 > C18:2>others; in which the dominant compound (C18:1), represented approximately 50% of the total. This research opens new possibilities in the cultivation of oleaginous yeasts for the production of biofuels and bioproducts from C1 gases.
Collapse
Affiliation(s)
- Cecilia Naveira-Pazos
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, E-15008-La, Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, E-15008-La, Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, E-15008-La, Coruña, Spain.
| |
Collapse
|
4
|
Robles-Iglesias R, Nicaud JM, Veiga MC, Kennes C. Integrated fermentative process for lipid and β-carotene production from acetogenic syngas fermentation using an engineered oleaginous Yarrowia lipolytica yeast. BIORESOURCE TECHNOLOGY 2023; 389:129815. [PMID: 37783238 DOI: 10.1016/j.biortech.2023.129815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
An engineered Yarrowia lipolytica strain was successfully employed to produce β-carotene and lipids from acetic acid, a product of syngas fermentation by Clostridium aceticum. The strain showed acetic acid tolerance up to concentrations of 20 g/L. Flask experiments yielded a peak lipid content of 33.7 % and β-carotene concentration of 13.6 mg/g under specific nutrient conditions. The study also investigated pH effects on production in bioreactors, revealing optimal lipid and β-carotene contents at pH 6.0, reaching 22.9 % and 44 mg/g, respectively. Lipid profiles were consistent across experiments, with C18:1 being the dominant compound at approximately 50 %. This research underscores a green revolution in bioprocessing, showing how biocatalysts can convert syngas, a potentially polluting byproduct, into valuable β-carotene and lipids with a Y. lipolytica strain.
Collapse
Affiliation(s)
- Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN Group, University of A Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN Group, University of A Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN Group, University of A Coruña, Rúa da Fraga 10, La Coruña 15008, Spain.
| |
Collapse
|
5
|
Robles-Iglesias R, Veiga MC, Kennes C. Sequential bioconversion of C 1-gases (CO, CO 2, syngas) into lipids, through the carboxylic acid platform, with Clostridium aceticum and Rhodosporidium toruloides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119097. [PMID: 37776787 DOI: 10.1016/j.jenvman.2023.119097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/02/2023] [Accepted: 08/30/2023] [Indexed: 10/02/2023]
Abstract
Syngas (CO, CO2, H2) was effectively bioconverted into lipids in a two-stage process. In the first stage, C1-gases were bioconverted into acetic acid by the acetogenic species Clostridium aceticum through the Wood-Ljungdahl metabolic pathway in a stirred tank bioreactor, reaching a maximum acetic acid concentration of 11.5 g/L, with a production rate of 0.05 g/L·h. Throughout this experiment, samples were extracted at different periods, i.e., different concentrations, to be used in the second stage, aiming at the production of lipids from acetic acid. The yeast Rhodosporidium toruloides, inoculated in the acetogenic medium, was able to efficiently accumulate lipids from acetic acid generated in the first stage. The best results, in terms of lipid content, dry biomass, biomass yield (Y(X/S)) and lipid yield (Y(L/S)) were 39.5% g/g dry cell weight, 3 g/L, 0.35 and 0.107, respectively. In terms of abundance, the lipid profile followed the order: C18:1 > C16:0 > C18:2 > C18:0 > Others. Experiments were also performed to determine the toxicity exerted by high concentrations of acetic acid on R. toruloides, resulting in inhibition at initial acid concentrations around 18 g/L leading to a higher lag phase and being lethal to the yeast at initial acetic acid concentrations around 22 g/L and above. This research paves the way for a novel method of growing oleaginous yeasts to produce sustainable biofuels from syngas or C1-pollutant gases.
Collapse
Affiliation(s)
- Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, E-15008-La, Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, E-15008-La, Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, E-15008-La, Coruña, Spain.
| |
Collapse
|
6
|
Kim JY, Lee M, Oh S, Kang B, Yasin M, Chang IS. Acetogen and acetogenesis for biological syngas valorization. BIORESOURCE TECHNOLOGY 2023; 384:129368. [PMID: 37343794 DOI: 10.1016/j.biortech.2023.129368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
The bioconversion of syngas using (homo)acetogens as biocatalysts shows promise as a viable option due to its higher selectivity and milder reaction conditions compared to thermochemical conversion. The current bioconversion process operates primarily to produce C2 chemicals (e.g., acetate and ethanol) with sufficient technology readiness levels (TRLs) in process engineering (as midstream) and product purification (as downstream). However, the economic feasibility of this process could be improved with greater biocatalytic options in the upstream phase. This review focuses on the Wood-Ljungdahl pathway (WLP) which is a biological syngas-utilization pathway, redox balance and ATP generation, suggesting that the use of a specific biocatalysts including Eubacterium limosum could be advantageous in syngas valorization. A pertinent strategy to mainly produce chemicals with a high degree of reduction is also provided with examples of flux control, mixed cultivation and mixotrophy. Finally, this article presents future direction of industrial utilization of syngas fermentation.
Collapse
Affiliation(s)
- Ji-Yeon Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mungyu Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Soyoung Oh
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Byeongchan Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
7
|
Harahap BM, Ahring BK. Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review. Microorganisms 2023; 11:microorganisms11040995. [PMID: 37110418 PMCID: PMC10143712 DOI: 10.3390/microorganisms11040995] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Biotransformation of lignocellulose-derived synthetic gas (syngas) into acetic acid is a promising way of creating biochemicals from lignocellulosic waste materials. Acetic acid has a growing market with applications within food, plastics and for upgrading into a wide range of biofuels and bio-products. In this paper, we will review the microbial conversion of syngas to acetic acid. This will include the presentation of acetate-producing bacterial strains and their optimal fermentation conditions, such as pH, temperature, media composition, and syngas composition, to enhance acetate production. The influence of syngas impurities generated from lignocellulose gasification will further be covered along with the means to alleviate impurity problems through gas purification. The problem with mass transfer limitation of gaseous fermentation will further be discussed as well as ways to improve gas uptake during the fermentation.
Collapse
Affiliation(s)
- Budi Mandra Harahap
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
| | - Birgitte K Ahring
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Wegner Hall, Pullman, WA 99164, USA
| |
Collapse
|
8
|
Fernández-Blanco C, Robles-Iglesias R, Naveira-Pazos C, Veiga MC, Kennes C. Production of biofuels from C 1 -gases with Clostridium and related bacteria-Recent advances. Microb Biotechnol 2023; 16:726-741. [PMID: 36661185 PMCID: PMC10034633 DOI: 10.1111/1751-7915.14220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/21/2023] Open
Abstract
Clostridium spp. are suitable for the bioconversion of C1 -gases (e.g., CO2 , CO and syngas) into different bioproducts. These products can be used as biofuels and are reviewed here, focusing on ethanol, butanol and hexanol, mainly. The production of higher alcohols (e.g., butanol and hexanol) has hardly been reviewed. Parameters affecting the optimization of the bioconversion process and bioreactor performance are addressed as well as the pathways involved in these bioconversions. New aspects, such as mixotrophy and sugar versus gas fermentation, are also reviewed. In addition, Clostridia can also produce higher alcohols from the integration of the Wood-Ljungdahl pathway and the reverse ß-oxidation pathway, which has also not yet been comprehensively reviewed. In the latter process, the acetogen uses the reducing power of CO/syngas to reduce C4 or C6 fatty acids, previously produced by a chain elongating microorganism (commonly Clostridium kluyveri), into the corresponding bioalcohol.
Collapse
Affiliation(s)
- Carla Fernández-Blanco
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| | - Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| | - Cecilia Naveira-Pazos
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| |
Collapse
|
9
|
Lv X, Yu W, Zhang C, Ning P, Li J, Liu Y, Du G, Liu L. C1-based biomanufacturing: Advances, challenges and perspectives. BIORESOURCE TECHNOLOGY 2023; 367:128259. [PMID: 36347475 DOI: 10.1016/j.biortech.2022.128259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
One-carbon (C1) compounds have emerged as a key research focus due to the growth of metabolic engineering and synthetic biology as affordable and sustainable nonfood sugar feedstocks for energy-efficient and environmentally friendly biomanufacturing. This paper summarizes and discusses current developments in C1 compounds for biomanufacturing. First, two primary groups of microbes that use C1 compounds (native and synthetic) are introduced, and the traits, categorization, and functions of C1 microbes are summarized. Second, engineering strategies for C1 utilization are compiled and reviewed, including reconstruction of C1-utilization pathway, enzyme engineering, cofactor engineering, genome-scale modeling, and adaptive laboratory evolution. Third, a review of C1 compounds' uses in the synthesis of biofuels and high-value compounds is presented. Finally, potential obstacles to C1-based biomanufacturing are highlighted along with future research initiatives.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Baima Future Foods Research Institute, Nanjing 211225, China
| | - Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Chenyang Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Peng Ning
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Oh HJ, Gong G, Ahn JH, Ko JK, Lee SM, Um Y. Effective hexanol production from carbon monoxide using extractive fermentation with Clostridium carboxidivorans P7. BIORESOURCE TECHNOLOGY 2023; 367:128201. [PMID: 36374655 DOI: 10.1016/j.biortech.2022.128201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
This study achieved high production of hexanol via gas fermentation using Clostridium carboxidivorans P7 by extracting hexanol from the fermentation broth. The hexanol extraction efficiency and inhibitory effects on C. carboxidivorans P7 of 2-butyl-1-octanol, hexyl hexanoate and oleyl alcohol were examined, and oleyl alcohol was selected as the extraction solvent. Oleyl alcohol was added at the beginning of fermentation and during fermentation or a small volume of oleyl alcohol was repeatedly added during fermentation. The addition of a small volume of oleyl alcohol during fermentation was the most effective for CO consumption and hexanol production (5.06 g/L), yielding the highest known hexanol titer through any type of fermentation including gas fermentation. Hexanol production was further enhanced to 8.45 g/L with the repeated addition of oleyl alcohol and ethanol during gas fermentation. The results of this study will enable sustainable and carbon-neutral hexanol production via gas fermentation.
Collapse
Affiliation(s)
- Hyun Ju Oh
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Naveira-Pazos C, Veiga MC, Kennes C. Accumulation of lipids by the oleaginous yeast Yarrowia lipolytica grown on carboxylic acids simulating syngas and carbon dioxide fermentation. BIORESOURCE TECHNOLOGY 2022; 360:127649. [PMID: 35868461 DOI: 10.1016/j.biortech.2022.127649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Volatile fatty acids (VFAs) can be considered as low-cost carbon substrates for lipid accumulation by oleaginous yeasts. This study demonstrates that a common mixture of VFAs, typically obtained from the anaerobic fermentation of C1-gases by some acetogenic bacteria, can be used in a second aerobic fermentation with the yeast Yarrowia lipolytica to obtain lipids as precursors of biodiesel. In the batch experiments, the preference of Yarrowia lipolytica W29 for acetic acid over butyric and caproic acids was demonstrated, with the highest consumption rate reaching 0.664 g/L·h. In the bioreactor experiments, the amount initial biomass inoculated, as well as the initial acid concentration, were found to have a significant influence on the process. Though the lipid content was relatively low, it can be optimized and further improved. Oleic, linoleic and palmitic acids accounted for about 80 % of the fatty acids in the lipids, which makes them suitable for biodiesel.
Collapse
Affiliation(s)
- Cecilia Naveira-Pazos
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008-La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008-La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008-La Coruña, Spain.
| |
Collapse
|
12
|
He Y, Kennes C, Lens PNL. Enhanced solventogenesis in syngas bioconversion: Role of process parameters and thermodynamics. CHEMOSPHERE 2022; 299:134425. [PMID: 35351479 DOI: 10.1016/j.chemosphere.2022.134425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Biofuels, such as ethanol and butanol, obtained from carbon monoxide-rich gas or syngas bioconversion (solventogenesis) are an attractive alternative to traditional fermentation processes with merits of no competition with food production and sustainability. However, there is a lack of comprehensive understanding of some key process parameters and mechanisms enhancing solventogenesis during the fermentation process. This review provides an overview of the current state of the art of the main influencing factors during the syngas fermentation process catalyzed by acetogenic species as well as undefined mixed cultures. The role of syngas pressure, syngas components, fermentation pH, temperature, trace metals, organic compounds and additional materials is overviewed. As a so far hardly considered approach, thermodynamic calculations of the Gibbs free energy of CO conversion to acetic acid, ethanol, butyric acid and butanol under different CO pressures and pH at 25, 33 and 55 °C are also addressed and reviewed. Strategies for enhancing mass transfer and longer carbon chain solvent production are considered as well.
Collapse
Affiliation(s)
- Yaxue He
- National University of Ireland Galway, H91 TK33, Galway, Ireland; Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña (UDC), E-15008, La Coruña, Spain.
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña (UDC), E-15008, La Coruña, Spain
| | - Piet N L Lens
- National University of Ireland Galway, H91 TK33, Galway, Ireland
| |
Collapse
|
13
|
Stark C, Münßinger S, Rosenau F, Eikmanns BJ, Schwentner A. The Potential of Sequential Fermentations in Converting C1 Substrates to Higher-Value Products. Front Microbiol 2022; 13:907577. [PMID: 35722332 PMCID: PMC9204031 DOI: 10.3389/fmicb.2022.907577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Today production of (bulk) chemicals and fuels almost exclusively relies on petroleum-based sources, which are connected to greenhouse gas release, fueling climate change. This increases the urgence to develop alternative bio-based technologies and processes. Gaseous and liquid C1 compounds are available at low cost and often occur as waste streams. Acetogenic bacteria can directly use C1 compounds like CO, CO2, formate or methanol anaerobically, converting them into acetate and ethanol for higher-value biotechnological products. However, these microorganisms possess strict energetic limitations, which in turn pose limitations to their potential for biotechnological applications. Moreover, efficient genetic tools for strain improvement are often missing. However, focusing on the metabolic abilities acetogens provide, they can prodigiously ease these technological disadvantages. Producing acetate and ethanol from C1 compounds can fuel via bio-based intermediates conversion into more energy-demanding, higher-value products, by deploying aerobic organisms that are able to grow with acetate/ethanol as carbon and energy source. Promising new approaches have become available combining these two fermentation steps in sequential approaches, either as separate fermentations or as integrated two-stage fermentation processes. This review aims at introducing, comparing, and evaluating the published approaches of sequential C1 fermentations, delivering a list of promising organisms for the individual fermentation steps and giving an overview of the existing broad spectrum of products based on acetate and ethanol. Understanding of these pioneering approaches allows collecting ideas for new products and may open avenues toward making full use of the technological potential of these concepts for establishment of a sustainable biotechnology.
Collapse
Affiliation(s)
- Christina Stark
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Sini Münßinger
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, University of Ulm, Ulm, Germany
| | - Bernhard J. Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
- *Correspondence: Bernhard J. Eikmanns,
| | - Andreas Schwentner
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
14
|
Lee H, Bae J, Jin S, Kang S, Cho BK. Engineering Acetogenic Bacteria for Efficient One-Carbon Utilization. Front Microbiol 2022; 13:865168. [PMID: 35615514 PMCID: PMC9124964 DOI: 10.3389/fmicb.2022.865168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
C1 gases, including carbon dioxide (CO2) and carbon monoxide (CO), are major contributors to climate crisis. Numerous studies have been conducted to fix and recycle C1 gases in order to solve this problem. Among them, the use of microorganisms as biocatalysts to convert C1 gases to value-added chemicals is a promising solution. Acetogenic bacteria (acetogens) have received attention as high-potential biocatalysts owing to their conserved Wood–Ljungdahl (WL) pathway, which fixes not only CO2 but also CO. Although some metabolites have been produced via C1 gas fermentation on an industrial scale, the conversion of C1 gases to produce various biochemicals by engineering acetogens has been limited. The energy limitation of acetogens is one of the challenges to overcome, as their metabolism operates at a thermodynamic limit, and the low solubility of gaseous substrates results in a limited supply of cellular energy. This review provides strategies for developing efficient platform strains for C1 gas conversion, focusing on engineering the WL pathway. Supplying liquid C1 substrates, which can be obtained from CO2, or electricity is introduced as a strategy to overcome the energy limitation. Future prospective approaches on engineering acetogens based on systems and synthetic biology approaches are also discussed.
Collapse
Affiliation(s)
- Hyeonsik Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sangrak Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seulgi Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Byung-Kwan Cho,
| |
Collapse
|
15
|
Bayar B, Veiga MC, Kennes C. Bioproduction of acetic acid from carbon dioxide as single substrate and zero valent iron (ZVI) by clostridia. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|