1
|
Bhatia SK, Gurav R, Yang YH. A review on waste activated sludge pretreatment for improved volatile fatty acids production and their upcycling into polyhydroxyalkanoates. Int J Biol Macromol 2025; 308:142562. [PMID: 40154714 DOI: 10.1016/j.ijbiomac.2025.142562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Waste activated sludge (WAS), a byproduct of wastewater treatment (WWTPs) facilities is challenging to manage because of its high organic content. Most of WAS is managed via anaerobic digestion (AD) to produce biogas, which is not deemed economically viable. The AD of WAS into volatile fatty acids (VFA) and their subsequent upcycling into polyhydroxyalkanoates (PHA) is gaining popularity due to their high value and uses. However, the fundamental issue with WAS is its low solubility, and pretreatment is required to increase it. Pretreatment disintegrates sludge floc and enhances its solubility, supports acetogens, and inhibits methanogens, leading to increased VFA synthesis in the AD process. The key factors influencing VFA yield include the size of the sludge granules, the mixing rate, and the presence of resistant organic components. Fermented broth containing VFA from AD can be utilized directly as a feedstock for microbial fermentation to produce PHA using both pure as well as mixed cultures. Utilisation of mixed cultures is useful since they are robust, able to consume a wide range of substrates, and do not require sterility. In addition, the VFA, which is made up of various organic acids, impacts the structure, productivity, characteristics, and type of PHA produced by microbial communities. Considering the importance of WAS management through VFA production and its integration with PHA production process this review article discusses the WAS pretreatment strategies, various factors that influence the AD process, trends in VFA to PHA production technologies with challenges, and possible solutions for integrated process development.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Ranjit Gurav
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Yung-Hun Yang
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Getino L, Martín JL, Chamizo-Ampudia A. A Review of Polyhydroxyalkanoates: Characterization, Production, and Application from Waste. Microorganisms 2024; 12:2028. [PMID: 39458337 PMCID: PMC11510099 DOI: 10.3390/microorganisms12102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The search for alternatives to petrochemical plastics has intensified, with increasing attention being directed toward bio-based polymers (bioplastics), which are considered healthier and more environmentally friendly options. In this review, a comprehensive overview of polyhydroxyalkanoates (PHAs) is provided, including their characterization, applications, and the mechanisms underlying their biosynthesis. PHAs are natural polyesters produced by a wide range of prokaryotic and some eukaryotic organisms, positioning them as a significant and widely studied type of bioplastic. Various strategies for the production of PHAs from agroindustrial waste, such as cacao shells, cheese whey, wine, wood, and beet molasses, are reviewed, emphasizing their potential as sustainable feedstocks. Industrial production processes for PHAs, including the complexities associated with extraction and purification, are also examined. Although the use of waste materials offers promise in reducing costs and environmental impact, challenges remain in optimizing these processes to enhance efficiency and cost-effectiveness. The need for continued research and development to improve the sustainability and economic viability of PHA production is emphasized, positioning PHAs as a viable and eco-friendly alternative to conventional petroleum-based plastics.
Collapse
Affiliation(s)
- Luis Getino
- Área de Genética, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| | - José Luis Martín
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| | - Alejandro Chamizo-Ampudia
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
- Institute of Molecular Biology, Genomics and Proteomics (INBIOMIC), Universidad de León, Campus de Vegazana, 24071 León, Spain
| |
Collapse
|
3
|
Sun S, Wang X, Cheng S, Lei Y, Sun W, Wang K, Li Z. A review of volatile fatty acids production from organic wastes: Intensification techniques and separation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121062. [PMID: 38735068 DOI: 10.1016/j.jenvman.2024.121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
High value-added products from organic waste fermentation have garnered increasing concern in modern society. VFAs are short-chain fatty acids, produced as intermediate products during the anaerobic fermentation of organic matter. VFAs can serve as an essential organic carbon source to produce substitutable fuels, microbial fats and oils, and synthetic biodegradable plastics et al. Extracting VFAs from the fermentation broths is a challenging task as the composition of suspensions is rather complex. In this paper, a comprehensive review of methods for VFAs production, extraction and separation are provided. Firstly, the methods to enhance VFAs production and significant operating parameters are briefly reviewed. Secondly, the evaluation and detailed discussion of various VFAs extraction and separation technologies, including membrane separation, complex extraction, and adsorption methods, are presented, highlighting their specific advantages and limitations. Finally, the challenges encountered by different separation technologies and novel approaches to enhance process performance are highlighted, providing theoretical guidance for recycling VFAs from organic wastes efficiently.
Collapse
Affiliation(s)
- Shushuang Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Xuemei Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Shikun Cheng
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Yuxin Lei
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Wenjin Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Kexin Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Zifu Li
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China; International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
4
|
Alaux E, Marie B, Couvreur M, Bounouba M, Hernandez-Raquet G. Impact of phosphorus limitation on medium-chain-length polyhydroxyalkanoate production by activated sludge. Appl Microbiol Biotechnol 2023; 107:3509-3522. [PMID: 37133798 DOI: 10.1007/s00253-023-12528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
For a sustainable economy, biodegradable biopolymers polyhydroxyalkanoates (PHA) are desirable substitutes to petroleum-based plastics that contaminate our environment. Medium-chain-length (MCL) PHA bioplastics are particularly interesting due to their thermoplastic properties. To hamper the high cost associated to PHA production, the use of bacterial mixed cultures cultivated in open systems and using cheap resources is a promising strategy. Here, we studied the operating conditions favouring direct MCL accumulation by activated sludge, using oleic acid as a model substrate and phosphorus limitation in fed-batch bioreactors. Our results confirm the presence of PHA-accumulating organisms (PHAAO) in activated sludge able to accumulate MCL from oleic acid. A positive correlation between phosphorus (P) limitation and PHA accumulation was demonstrated, allowing up to 26% PHA/total biomass accumulation, and highlighted its negative impact on the MCL/PHA fraction in the polymer. Diversity analysis through 16S rRNA amplicon sequencing revealed a differential selection of PHAAO according to the P-limitation level. A differential behaviour for the orders Pseudomonadales and Burkholderiales at increasing P-limitation levels was revealed, with a higher abundance of the latter at high levels of P-limitation. The PHA accumulation observed in activated sludge open new perspectives for MCL-PHA production system based on P-limitation strategy applied to mixed microbial communities. KEY POINTS: • Direct accumulation of MCL-PHA in activated sludge was demonstrated. • MCL-PHA content is negatively correlated with P-limitation. • Burkholderiales members discriminate the highest P-limitation levels.
Collapse
Affiliation(s)
- Emilie Alaux
- Toulouse Biotechnology Institute - TBI, Université de Toulouse, UMR5504, UMR792, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077 cedex 04, Toulouse, France
| | - Bastien Marie
- Toulouse Biotechnology Institute - TBI, Université de Toulouse, UMR5504, UMR792, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077 cedex 04, Toulouse, France
| | - Marion Couvreur
- Toulouse Biotechnology Institute - TBI, Université de Toulouse, UMR5504, UMR792, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077 cedex 04, Toulouse, France
| | - Mansour Bounouba
- Toulouse Biotechnology Institute - TBI, Université de Toulouse, UMR5504, UMR792, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077 cedex 04, Toulouse, France
| | - Guillermina Hernandez-Raquet
- Toulouse Biotechnology Institute - TBI, Université de Toulouse, UMR5504, UMR792, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077 cedex 04, Toulouse, France.
| |
Collapse
|
5
|
Li D, Gao M, Qiu Y, Su Y, Ma X, Wang F, Li J, Yu L. Strategy for economical and enhanced polyhydroxyalkanoate production from synergistic utilization of palm oil and derived wastewater by activated sludge. BIORESOURCE TECHNOLOGY 2023; 370:128581. [PMID: 36608857 DOI: 10.1016/j.biortech.2023.128581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The potential of palm oil and derived wastewater pretreated by enzyme as co-substrates to accumulate polyhydroxyalkanoate (PHA) rich in short and medium-chain-length monomers under two feeding strategies was evaluated batchwise through mixed microbial cultures (MMCs) in activated sludge. A terpolymer with the maximum PHA content of 30.5 wt%, volumetric yield of 0.372 g COD/g COD and composition of ca. 84.7 ∼ 97.4/0.5 ∼ 1.6/2.1 ∼ 13.7 (3-hydroxybutyrate/ 3-hydroxyvalerate/ 3-hydroxyoctanoate, %) was achieved as a result of co-substrate incorporation. From the perspective of economic benefits, PHA accumulated via adopting strategy of supplementing carbon source to the same initial concentration per cycle saved 42.7 % of carbon consumption, along with a reduction in culture time (72 h). The above discoveries signify that the combination of palm oil and derived wastewater plus MMCs provides an alternative to the plastics industries for a more sustainable and efficient utilization of biological resources and an economic PHA accumulation approach.
Collapse
Affiliation(s)
- Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, PR China
| | - Miao Gao
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yuhang Su
- College of Materials and Environmental Engineering, Fujian Polytechnic Normal University, Fuqing 350300, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Materials and Environmental Engineering, Fujian Polytechnic Normal University, Fuqing 350300, PR China.
| | - Fei Wang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Jianing Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, PR China
| | - Lili Yu
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
6
|
Koch J, Scott E, Bitter J, Asadi Tashvigh A. A plant wide simulation of polyhydroxyalkanoate production from wastewater and its conversion to methyl crotonate. BIORESOURCE TECHNOLOGY 2022; 363:127994. [PMID: 36262002 DOI: 10.1016/j.biortech.2022.127994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
This work simulates the production of methyl crotonate from various industrial wastewaters. In the upstream process, wastewater is fermented into volatile fatty acids which are then converted into polyhydroxyalkanoates (PHA) by means of mixed microbial cultures. In the downstream, PHA undergoes a series of thermolysis and esterification reactions to produce methyl crotonate. The origin of the wastewater was found to have a great influence on the composition of the PHA with the effluent of a candy bar factory producing a high polyhydroxybutyrate/polyhydroxyvalerate ratio of 86/14 in favour of methyl crotonate production. It was observed that the use of intracellular polyhydroxybutyrate, instead of purified, significantly lowers the number of separation steps and yet reduces the methyl crotonate recovery by only 20 %. An operating pressure higher than 18 bar led to more transesterification of polyhydroxybutyrate, producing byproducts instead of methyl crotonate. Finally, a 3 h reaction was found sufficient for completion of polyhydroxybutyrate conversion.
Collapse
Affiliation(s)
- Joris Koch
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Elinor Scott
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Johannes Bitter
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Akbar Asadi Tashvigh
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
7
|
Efficient production of poly-3-hydroxybutyrate from acetate and butyrate by halophilic bacteria Salinivibrio spp. TGB4 and TGB19. Int J Biol Macromol 2022; 221:1365-1372. [PMID: 36126806 DOI: 10.1016/j.ijbiomac.2022.09.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022]
Abstract
Volatile fatty acids (VFAs) derived from biomass are considered to be economical and environmentally friendly feedstocks for microbial fermentation. Converting VFAs to polyhydroxyalkanoate (PHA) could reduce the substrate cost and provide an economically viable route for the commercialization of PHA. The halophilic bacteria Salinivibrio spp. TGB4 and TGB19, newly isolated from salt fields, were found to accumulate poly-3-hydroxybutyrate (PHB) using acetate or butyrate as the substrate. Both strains exhibited considerable cell growth (OD600 of ~8) even at acetate concentration of 100 g/L. In shake flask cultures, TGB4 produced PHB titers of 0.90 and 1.34 g/L, while TGB19 produced PHB titers of 0.25 and 2.53 g/L with acetate and butyrate, respectively. When acetate and butyrate were both applied, PHB production was significantly increased, and the PHB titer of TGB4 and TGB19 reached 6.14 and 6.84 g/L, respectively. After optimizing the culture medium, TGB19 produced 8.42 g/L PHB, corresponding to 88.55 wt% of cell dry weight. During fed-batch cultivation, TGB19 produced a PHB titer of 53.23 g/L. This is the highest reported PHB titer using acetate and butyrate by pure microbial cultures and would provide promising hosts for the industrial production of PHA from VFAs.
Collapse
|
8
|
Valorization of Brewery Waste through Polyhydroxyalkanoates Production Supported by a Metabolic Specialized Microbiome. Life (Basel) 2022; 12:life12091347. [PMID: 36143384 PMCID: PMC9505892 DOI: 10.3390/life12091347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Raw brewers’ spent grain, a by-product of beer production, is produced at a large scale and is usually used as animal feed or is landfilled. However, its composition shows that this feedstock has the potential for other applications, such as bioplastics production (e.g., polyhydroxyalkanoates). In this way, the aim of this work was to assess the use of raw brewers’ spent grain for polyhydroxyalkanoates production, adding new value to this feedstock. The results confirm the potential of raw brewers’ spent grain to produce polyhydroxyalkanoates, as the population was enriched in the microorganisms able to accumulate these biopolymers. These results will contribute to society’s knowledge and competence via the development of a treatment process for brewery waste of both environmental (productive waste treatment) and economic interest (production of biopolymers), which will certainly attract its application to the brewery industry worldwide. Abstract Raw brewers’ spent grain (BSG), a by-product of beer production and produced at a large scale, presents a composition that has been shown to have potential as feedstock for several biological processes, such as polyhydroxyalkanoates (PHAs) production. Although the high interest in the PHA production from waste, the bioconversion of BSG into PHA using microbial mixed cultures (MMC) has not yet been explored. This study explored the feasibility to produce PHA from BSG through the enrichment of a mixed microbial culture in PHA-storing organisms. The increase in organic loading rate (OLR) was shown to have only a slight influence on the process performance, although a high selectivity in PHA-storing microorganisms accumulation was reached. The culture was enriched on various PHA-storing microorganisms, such as bacteria belonging to the Meganema, Carnobacterium, Leucobacter, and Paracocccus genera. The enrichment process led to specialization of the microbiome, but the high diversity in PHA-storing microorganisms could have contributed to the process stability and efficiency, allowing for achieving a maximum PHA content of 35.2 ± 5.5 wt.% (VSS basis) and a yield of 0.61 ± 0.09 CmmolPHA/CmmolVFA in the accumulation assays. Overall, the production of PHA from fermented BSG is a feasible process confirming the valorization potential of the feedstock through the production of added-value products.
Collapse
|
9
|
Li J, Li D, Su Y, Yan X, Wang F, Yu L, Ma X. Efficient and economical production of polyhydroxyalkanoate from sustainable rubber wood hydrolysate and xylose as co-substrate by mixed microbial cultures. BIORESOURCE TECHNOLOGY 2022; 355:127238. [PMID: 35489568 DOI: 10.1016/j.biortech.2022.127238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Using co-substrate to accumulate polyhydroxyalkanoate (PHA) is an efficient approach to reduce production cost and improve yield of PHA. In the study, PHA was biosynthesized under full aerobic mode by using rubber wood hydrolysate and xylose co-substrate as the carbon source. The effects of co-substrate on PHA production, microbial community and carbon conversion were explored. The results showed that proper addition of xylose was beneficial for the synthesis of PHA and monomer 3-hydroxyvalerate (3HV). Higher conversion yield of substrate-to-PHA (YPHA/S) of 0.933 g COD PHA/g COD S and PHA content of 43.6 g PHA/100 g VSS were gained at co-substrate ratio of 1:1. Likewise, under this condition, PHA production also reached the highest value of 1849 mg COD/L (1088 mg/L). Moreover, the addition of xylose created a favorable screening of PHA dominant strains, improved the conversion of carbon source, and saved 72.3% of feedstock consumption.
Collapse
Affiliation(s)
- Jianing Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, PR China
| | - Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yuhang Su
- College of Materials and Environmental Engineering, Fujian Polytechnic Normal University, Fuqing 350300, PR China
| | - Xu Yan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Fei Wang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lili Yu
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaojun Ma
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, PR China; College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
10
|
Li D, Yan X, Li Y, Ma X, Li J. Achieving polyhydroxyalkanoate production from rubber wood waste using mixed microbial cultures and anaerobic-aerobic feeding regime. Int J Biol Macromol 2022; 199:162-171. [PMID: 34973983 DOI: 10.1016/j.ijbiomac.2021.12.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 11/05/2022]
Abstract
In the past few years, creating value-added products has become the best choice to pretreat biomass waste. For instance, the fermentable sugar obtained after pretreatment bioconversion into valuable bioproducts, biopolymer as a typical representative, has become a potential strategy. In particular, the production of biopolymer polyhydroxyalkanoate (PHA) by mixed microbial cultures in waste activated sludge can be regarded as a promising alternative to traditional petrochemical plastics. In this study, the enzymatic hydrolysate of rubber wood was utilized as substrate to explore the optimal process conditions for the accumulation of PHA under anaerobic-aerobic mode. The results showed that longer operation cycle (24 h), suitable anaerobic duration (3.5 h) and secondary feeding regimen (secondary addition without draining liquid) were more beneficial to PHA production. After accumulation, the highest PHA production, PHA storage yield (YPHA/S) and ratio to cell dry weight (CDW) reached 929.8 mg COD·L-1, 0.24 g COD/g COD and 0.31 g PHA/g CDW, respectively. The YPHA/S values were similar to the previous reported 0.22 ∼ 0.24 g COD/g COD. The results demonstrated that the secondary feeding regimen was an effective approach to improve the production of PHA with rubber wood enzymatic hydrolysate as substrate.
Collapse
Affiliation(s)
- Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Xu Yan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Yachao Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China.
| | - Jianing Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| |
Collapse
|