1
|
Zhao W, Cao X, Pan H, Lou Y, Wang H, Yang Q, Zhuge Y. Effects of Biochar on Cadmium Availability, Nitrification and Microbial Communities in Soils with Varied pH Levels. Microorganisms 2025; 13:839. [PMID: 40284673 PMCID: PMC12029553 DOI: 10.3390/microorganisms13040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/07/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Cadmium (Cd) contamination poses severe threats to agricultural productivity and ecosystem health. Biochar has shown promise in immobilizing Cd and enhancing microbial functions, yet its pH-dependent mechanisms remain underexplored. This study aimed to elucidate pH-dependent variations in biochar-mediated cadmium (Cd) immobilization efficiency, nitrification activity, and bacterial community diversity across soils of contrasting pH levels, with mechanistic insights into the synergistic interplay between biochar properties and soil pH. Real-time quantitative PCR (qPCR) and high-throughput sequencing were used to investigate the effects of a 1% (w/w) biochar amendment on ammonia-oxidizing microorganism abundance and microbial diversity in neutral Shandong soil (SD, pH 7.46) and acidic Yunnan soil (YN, pH 5.88). In neutral SD soil, available Cd decreased from 0.22 mg kg-1 (day 0) to 0.1 mg kg-1 (day 56) and stabilized, accompanied by insignificant changes in ammonia-oxidizing bacteria (AOB) abundance. However, nitrification activity was enhanced through the enrichment of Nitrospira (nitrite-oxidizing bacteria within Nitrospirales and Nitrospiraceae). In acidic YN soil, biochar reduced available Cd by 53.37% over 56 days, concurrent with a 34.28% increase in AOB amoA gene abundance (predominantly Nitrosomonadales), driving pH-dependent nitrification enhancement. These findings demonstrated that biochar efficacy was critically modulated by soil pH; the acidic soils require higher biochar dosages (>1% w/w, adjusted to local soil properties and agronomic conditions) for optimal Cd immobilization. Meanwhile, pH-specific nitrifier taxa (Nitrosomonadales in acidic vs. Nitrospira in neutral soils) underpinned biochar-induced nitrification dynamics. The study provided a mechanistic framework for tailoring biochar remediation strategies to soil pH gradients, emphasizing the synergistic regulation of Cd immobilization and microbial nitrogen cycling.
Collapse
Affiliation(s)
| | | | - Hong Pan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China; (W.Z.); (X.C.); (Y.L.); (H.W.); (Q.Y.)
| | | | | | | | - Yuping Zhuge
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China; (W.Z.); (X.C.); (Y.L.); (H.W.); (Q.Y.)
| |
Collapse
|
2
|
Bai C, Li W, Lv L, Wang S, Zhang G, Feng H, Wang X, Zhang J, Jiang S. Enhancing low-temperature nitrification biofilter with Acinetobacter harbinensis HITLi7 T for efficient ammonia nitrogen removal in engineering applications. BIORESOURCE TECHNOLOGY 2024; 414:131587. [PMID: 39419408 DOI: 10.1016/j.biortech.2024.131587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Low temperature has always been a significant limitation for the biological removal of ammonia nitrogen (NH3-N) from water. Acinetobacter harbinensis HITLi7T (HITLi7T) was used to enhance the low-temperature nitrification biofilter (LTNB) with a treatment capacity of 20,000 m3/d. At 2 °C, with an empty bed contact time of 3 h, the LTNB achieved NH3-N removal levels of 1.2 ∼ 1.5 mg/L. The nitrifying bacteria (Nitrosomonas, Nitrosospira, Nitrospira and Candidatus_Nitrotoga) were significantly enriched. PICRUSt2 and FAPROTAX revealed the nitrification pathway of NH3-N conversion to hydroxylamine, then to nitrite, and finally to nitrate. The high co-occurrence of HITLi7T with the nitrifying bacteria suggested that HITLi7T might also promote the enrichment of nitrifying bacteria. Life cycle assessment showed that LTNB was an economical and environmentally friendly method for NH3-N removal. These results indicated that HITLi7T enhanced the nitrification performance of biofilters, improved the cold tolerance of nitrifying bacteria, and had potential for practical applications.
Collapse
Affiliation(s)
- Caihua Bai
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shuncai Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guanglin Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huanzhang Feng
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuhui Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jingyi Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shangfeng Jiang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Zou X, Cao K, Wang Q, Kang S, Wang Y. Enhanced degradation of polylactic acid microplastics in acidic soils: Does the application of biochar matter? JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135262. [PMID: 39047572 DOI: 10.1016/j.jhazmat.2024.135262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Biodegradable plastics, as an alternative to petroleum plastics, are fiercely increasing, but their incomplete degradation under natural conditions may lead to the breakdown into microplastics (MPs). Here, we explored the impacts of chicken manure-derived (MBC) and wood waste-derived biochar (WBC) on the degradation of polylactic acid microplastics (PLA-MPs) during soil incubation for one year. Both biochars induced more pronounced degradation characteristics in PLA-MPs, including enhanced surface roughness, the proportion of MPs < 100 µm by 12.89 %-25.67 %, oxygen loading and O/C ratio to 71.74 %-75.87 % and 1.70-1.76, as well as accelerated carbon loss and the cleavage of ester group and C-C bond. Also, biochar increased soil pH, depleted inorganic nitrogen and available phosphorus, and changed enzymic activity in PLA-MP-polluted soils. We proposed that both biochars accelerated the PLA-MP degradation by inducing alkaline, aminolysis/ammonolysis, oxidative, and microbial degradation. Among these, MBC induced aminolysis/ammonolysis by NH4+ via Fe2+-driven NO3-/NO2- reduction and microbial nitrogen fixation, and oxidative degradation by radicals generated through Fenton/Fenton-like reaction. WBC caused aminolysis/ammonolysis and oxidative degradation mainly through dissimilatory nitrate reduction to ammonium and surface free radicals on biochar. These findings indicate that biochar has the potential to accelerate PLA-MP degradation, and its regulatory mechanism depends on the type of biochar.
Collapse
Affiliation(s)
- Xiaoyan Zou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Kaibo Cao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiang Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shilei Kang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yin Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
4
|
Fan B, Zhao C, Zhao L, Wang M, Sun N, Li Z, Yang F. Biochar application can enhance phosphorus solubilization by strengthening redox properties of humic reducing microorganisms during composting. BIORESOURCE TECHNOLOGY 2024; 395:130329. [PMID: 38224785 DOI: 10.1016/j.biortech.2024.130329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Phosphorus (P) in nature mostly exists in an insoluble state, and humic reducing microorganisms (HRMs) can dissolve insoluble substances through redox properties. This study aimed to investigate the correlations between insoluble P and dominant HRMs amenable to individual culture during biochar composting. These analyses revealed that, in comparison to the control, biochar addition increased the relative abundance of dominant HRMs by 20.3% and decreased redox potential (Eh) levels by 15.4% hence, enhancing the moderately-labile-P and non-labile-P dissolution. The pathways underlying the observed effects were additionally assessed through structural equation modeling, revealing that biochar addition promoted insoluble P dissolution through both the direct effects of bacterial community structure as well as the direct effects of HRMs community structure and indirect effects based on Eh of HRMs community structure. This research offers a better understanding of the effect of HRMs on insoluble P during the composting process.
Collapse
Affiliation(s)
- Bowen Fan
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China; College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang 163319, China; Engineering Research Center of Crop Straw Utilization, Daqing, Heilongjiang 163319, China
| | - Changjiang Zhao
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang 163319, China; Engineering Research Center of Crop Straw Utilization, Daqing, Heilongjiang 163319, China
| | - Liqin Zhao
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mengmeng Wang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ning Sun
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zoutong Li
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang 163319, China; Engineering Research Center of Crop Straw Utilization, Daqing, Heilongjiang 163319, China
| | - Fengjun Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
5
|
Bao J, Li S, Qv M, Wang W, Wu Q, Kristianto Nugroho Y, Huang L, Zhu L. Urea addition as an enhanced strategy for degradation of petroleum contaminants during co-composting of straw and pig manure: Evidences from microbial community and enzyme activity evaluation. BIORESOURCE TECHNOLOGY 2024; 393:130135. [PMID: 38043688 DOI: 10.1016/j.biortech.2023.130135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Alterations in microbial community succession patterns and enzyme activities by petroleum pollutants during co-composting of straw and swine manure with the supplementary nitrogen source are unclear. In this study, urea was added into co-composting systems, and the removal performance of petroleum, microbial enzyme activity and community changes were investigated. Results showed that the polyphenol oxidase and catalase activities which were both related to the degradation of petroleum contaminants were accordingly increased from 20.65 to 30.31 U/g and from 171.87 to 231.86 U/g due to urea addition. The removal efficiency of petroleum contaminants in composting with urea increased from 45.06% to 82.29%. The addition of urea increased the diversity and abundance of petroleum-degrading microorganisms, and enhanced microbial linkages. This study provides a novel strategy for the degradation of petroleum hydrocarbon as well as a new insight into the effect of urea on both microbial processes and composting phases.
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Mingxiang Qv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Wei Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Qirui Wu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | | | - Lizhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
6
|
Su Y, Wang Y, Liu G, Zhang Z, Li X, Chen G, Gou Z, Gao Q. Nitrogen (N) "supplementation, slow release, and retention" strategy improves N use efficiency via the synergistic effect of biochar, nitrogen-fixing bacteria, and dicyandiamide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168518. [PMID: 37967639 DOI: 10.1016/j.scitotenv.2023.168518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Irrational nitrogen (N) fertilizer management and application practices have led to a range of ecological and environmental problems that seriously threaten food security. In this study, an effective N fertilizer management strategy was established for improving N fertilizer utilization efficiency (NUE). Biochar, N2-fixing bacteria (Enterobacter cloacae), and a nitrification inhibitor (dicyandiamide, DCD) were simultaneously added to the soil during maize cultivation. The goal was to increase soil ammonium nitrogen content and NUE by regulating the relative abundance, enzyme activity, and functional gene expression of N conversion-related soil microbes. Biochar combined with E. cloacae and DCD significantly increased soil N content, and the NUE reached 46.69 %. The relative abundance of Burkholderia and Bradyrhizobium and the activity of nitrogenase increased significantly during biological N2 fixation. Further, the abundance of the nifH gene was significantly up-regulated. The relative abundance of Sphingomonas, Pseudomonas, Nitrospira, and Castellaniella and the activities of ammonia monooxygenase and nitrate reductase decreased significantly during nitrification and denitrification. Moreover, the abundance of the genes amoA and narG was significantly down-regulated. Correlation analyses showed that the increase in soil N2 fixation and the suppression of nitrification and denitrification reactions were the key contributors to the increase in soil N content and NUE. Biochar combined with E. cloacae and DCD synergistically enabled the supplementation, slow release, and retention of N, thus providing adequate N for maize growth. Thus, the combination of biochar, E. cloacae, and DCD is effective for mitigating the irrational application of N fertilizers and reducing N pollution.
Collapse
Affiliation(s)
- Yingjie Su
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yanran Wang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Guoqing Liu
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhongqing Zhang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoyu Li
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Guang Chen
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zechang Gou
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Qiang Gao
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
7
|
Wang B, Zhang P, Guo X, Bao X, Tian J, Li G, Zhang J. Contribution of zeolite to nitrogen retention in chicken manure and straw compost: Reduction of NH 3 and N 2O emissions and increase of nitrate. BIORESOURCE TECHNOLOGY 2024; 391:129981. [PMID: 37926358 DOI: 10.1016/j.biortech.2023.129981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Co-composting of chicken manure, straw and zeolite was investigated in a water bath heating system to estimate the effect of zeolite on physicochemical properties and metabolic functions related to nitrogen conversion. The results indicated that NH3 catches by zeolite was concentrated in the early stage and zeolite with 10 % addition reduced 28 % NH3 and 55 % N2O emissions as compost ended. The nitrate content in 10 % zeolite group was 17 % higher than that in control group. There was no significant increase of NO2- in zeolite group. More NO2- formed NH3, rather than being converted to NOx through denitrification. The abundance of nitrification genes amoA and hao increased except nxrA in zeolite groups. Denitrification was the most obvious at 20 d and zeolite decreased the abundance of denitrification genes narG, nirK and nosZ at this time.
Collapse
Affiliation(s)
- Bing Wang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Peng Zhang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Xu Guo
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Xu Bao
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Junjie Tian
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Guomin Li
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Jian Zhang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
8
|
Zhang X, Chen G, Kang J, Bello A, Fan Z, Liu P, Su E, Lang K, Ma B, Li H, Xu X. β-Glucosidase-producing microbial community in composting: Response to different carbon metabolic pressure influenced by biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119506. [PMID: 37951109 DOI: 10.1016/j.jenvman.2023.119506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Poor management of agricultural waste will cause a lot of environment pollution and the composting process is one of the most effective measures for resource reuse of agricultural waste. β-Glucosidase-producing microbial communities play a vital role in cellulose degradation during composting and regulate cellulase production via differentially expressed glucose/non-glucose tolerant β-glucosidase genes. Biochar is widely used as an amendment in compost to accelerate cellulose degradation during composting. However, Biochar-mediated impacts on β-glucosidase-producing microbial communities in compost are unclear. Here, different carbon metabolism pressures were set in natural and biochar compost to elucidate the regulation mechanism and interaction of the β-glucosidase microbial community. Results showed that the addition of biochar decreased the transcription of β-glucosidase genes and led to a reduction of β-glucosidase activity. Micromonospora and Cellulosimicrobium were the predominant functional communities determining cellulose degradation during biochar compost. Biochar addition strengthened the response of the functional microbial community to carbon metabolism pressure. And adding biochar altered the key β-glucosidase-producing microbial communities, influencing cellulase and the interaction between these communities to respond to the different carbon metabolic pressure of compost. Biochar also shifted the co-occurrence network of β-glucosidase-producing microbial community by changing the keystone species. Furthermore, co-occurrence network analysis revealed that high glucose decreased the complexity and stability of the functional microbial network. Most functional microorganisms from Streptomyces produce non-glucose tolerant β-glucosidase, which were the key bacterial communities affecting β-glucosidase activity in the non-glucose treatment. This study provides new insights into the response of functional microbial communities and the regulation of enzyme production during the transformation of cellulosic biomass.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Guangxin Chen
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jingxue Kang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Ayodeji Bello
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zhihua Fan
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Peizhu Liu
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Erlie Su
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Kaice Lang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Ma
- School of Animal Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hongtao Li
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiuhong Xu
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
9
|
Hassanzadeh Moghimi O, Nabi Bidhendi G, Daryabeigi Zand A, Rabiee Abyaneh M, Nabi Bidhendi A. Effect of forest-based biochar on maturity indices and bio-availability of heavy metals during the composting process of organic fraction of municipal solid waste (OFMSW). Sci Rep 2023; 13:15977. [PMID: 37749149 PMCID: PMC10519951 DOI: 10.1038/s41598-023-42835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
The main objective of this study was to investigate the effect of biochar on the composting process of the organic fraction of municipal solid waste (OFMSW) under real conditions. Different doses of biochar (1%, 3%, and 5%) were mixed with compost piles to evaluate the variation of temperature, moisture content (MC), organic matter (OM), carbon (C), nitrogen (N), C/N ratio, and heavy metal (HM) contents in comparison with the control treatment (with 0% biochar addition). The results of this study showed that the compost piles combined with different doses of biochar had higher MC. The use of biochar as an additive, even at low doses (1%), was able to increase the compost quality through the reduction of N losses during the composting process. The highest reduction of OM during the composting process was observed in the control pile (without biochar addition) by 48.06%, whereas biochar affected the biodegradability of OM and prevented the reduction of nutrients during the composting process under real conditions. The contents of HMs (Pb, Zn, Ni, Cd, and Cu) showed a significant reduction in all of the compost piles combined with biochar in comparison with the control treatment. Considering that in terms of all compost quality indicators, the piles combined with biochar can regarded as high standard product, the composts obtained from combining the OFMSW with different biochar doses have desirable features to be used as an amendment agent to improve agricultural soil quality.
Collapse
Affiliation(s)
- Omid Hassanzadeh Moghimi
- Department of Environmental Engineering, Kish International Campus, University of Tehran, Kish, Iran.
| | | | | | - Maryam Rabiee Abyaneh
- Department of Environmental Engineering, Kish International Campus, University of Tehran, Kish, Iran
| | - Amir Nabi Bidhendi
- Department of Environmental Engineering, Aras International Campus, University of Tehran, Jolfa, Iran
| |
Collapse
|
10
|
Jiao M, Ren X, Zhan X, Hu C, Wang J, Syed A, Bahkali AH, Zhang Z. Exploring gaseous emissions and pivotal enzymatic activity during co-composting of branch and pig manure: The effect of particle size of bulking agents. BIORESOURCE TECHNOLOGY 2023; 382:129199. [PMID: 37201868 DOI: 10.1016/j.biortech.2023.129199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
The purpose of current study was to probe the effect of various length of branch on gaseous emissions and vital enzymatic activity. Four lengths (< 2 cm, 2 cm, 5 cm, and > 5 cm) of clipped branch were mingled with collected pig manure for 100 days aerobic fermentation. The consequence demonstrated that the amendment of 2 cm of branch showed conducive to decline the greenhouse gas emissions, which the CH4 emissions decreased by 1.62-40.10%, and the N2O emissions decreased by 21.91-34.04% contrasted with other treatments. Furthermore, the peak degree of enzymatic activities was also observed in 2 cm of branch treatment by the optimizing living condition for microbes. In view of microbiological indicators, the most abundant and complex bacterial community could be monitor in 2 cm of branch composting pile, which verified the microbial facilitation. Summing up, the strategy of 2 cm branch amendment would be recommended.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
11
|
Sun Y, Xu Y, Zhang J, Bello A, Li X, Liu W, Egbeagu UU, Zhao L, Han Y, Cheng L, Zhang W, Meng Q, Bi R, Zhao M, Liu X, Sun L, Gai Z, Shi S, Jong C, Xu X. Investigation of underlying links between nitrogen transformation and microorganisms' network modularity in the novel static aerobic composting of dairy manure by "stepwise verification interaction analysis". THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163674. [PMID: 37100152 DOI: 10.1016/j.scitotenv.2023.163674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/21/2023] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
Conventional composting is a viable method treating agricultural solid waste, and microorganisms and nitrogen transformation are the two major components of this proces. Unfortunately, conventional composting is time-consuming and laborious, and limited efforts have been made to mitigate these problems. Herein, a novel static aerobic composting technology (NSACT) was developed and employed for the composting of cow manure and rice straw mixtures. During the composting process, physicochemical parameters were analyzed to evaluate the quality of compost products, and microbial abundance dynamics were determined using high-throughput sequencing technique. The results showed that NSACT achieved compost maturity within 17 days as the thermophilic stage (≥55 °C) lasted for 11 days. GI, pH, and C/N were 98.71 %, 8.38, and 19.67 in the top layer, 92.32 %, 8.24, and 22.38 in the middle layer, 102.08 %, 8.33, and 19.95 in the bottom layer. These observations indicate compost products maturated and met the requirements of current legislation. Compared with fungi, bacterial communities dominated NSACT composting system. Based on the stepwise verification interaction analysis (SVIA), the novel combination utilization of multiple statistical analyses (Spearman, RDA/CCA, Network modularity, and Path analyses), bacterial genera Norank Anaerolineaceae (-0.9279*), norank Gemmatimonadetes (1.1959*), norank Acidobacteria (0.6137**) and unclassified Proteobacteria (-0.7998*), and fungi genera Myriococcum thermophilum (-0.0445), unclassified Sordariales (-0.0828*), unclassified Lasiosphaeriaceae (-0.4174**), and Coprinopsis calospora (-0.3453*) were the identified key microbial taxa affecting NH4+-N, NO3--N, TKN and C/N transformation in the NSACT composting matrix respectively. This work revealed that NSACT successfully managed cow manure-rice straw wastes and significantly shorten the composting period. Interestingly, most microorganisms observed in this composting matrix acted in a synergistic manner, promoting nitrogen transformation.
Collapse
Affiliation(s)
- Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yonghui Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jining Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liyan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lijun Cheng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wenhao Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingxin Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ruixin Bi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mingming Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinda Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhaoxue Gai
- School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chol Jong
- College of Agriculture, Kimjewon Haeju University of Agriculture, Haeju City, Hwanghae South Province 999093, Republic of Korea
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Wang N, Bai X, Huang D, Shao M, Chen Q, Xu Q. Insights into the influence of digestate-derived biochar upon the microbial community succession during the composting of digestate from food waste. CHEMOSPHERE 2023; 316:137786. [PMID: 36634716 DOI: 10.1016/j.chemosphere.2023.137786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/03/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The by-product from the anaerobic digestion of food waste (FW) called the digestate (DFW) needs proper disposal because of its high environmental burden. Composting can transform DFW into a nutrient-containing soil improver via a series of microbial metabolic activities. However, the long composting time and high amount of ammonia emission are the key concerns of DFW composting. In the present study, the effect of DFW-derived biochar (BC-DFW) on microbial succession and its involvement in nitrogen transformation and humification during DFW composting were investigated. The results indicated that the BC-DFW accelerated bacterial and fungal evolution, and the bacterial diversity was augmented by increasing the amount of BC-DFW. In particular, Cryomorpha, Castellaniella, Aequorivita, and Moheibacter were enriched by the addition of BC-DFW, thereby enhancing the degradation of organic matter and nitrogen transformation and increasing the germination index. The group with 25% BC-DFW contained a higher relative abundance of Cryomorpha (2.08%, 2.47%) than the control (0.39%, 1.72%) on days 19 and 35 which benefited the degradation of organic matter. The group with 25% BC-DFW quickly enhanced the growth of Nitrosomonas, thereby accelerating the conversion of ammonium-nitrogen to nitrate-nitrogen and reducing the phytotoxicity of the composting product.
Collapse
Affiliation(s)
- Ning Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life and Sciences, Hainan Normal University, Haikou, Hainan Province, 571158, PR China; Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Dandan Huang
- School of Ecology, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Mingshuai Shao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
13
|
Deng L, Liu W, Chang N, Sun L, Zhang J, Bello A, Uzoamaka Egbeagu U, Shi S, Sun Y, Xu X. Disentangling the coupling relationships between functional denitrifiers and nitrogen transformation during cattle-manure and biochar composting: A novel perspective. BIORESOURCE TECHNOLOGY 2023; 367:128235. [PMID: 36332857 DOI: 10.1016/j.biortech.2022.128235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
This study explored the coupling relationships between denitrifiers and N-transformation using multi-level (DNA, RNA and enzyme) and multi-aspect (abundance, diversity, structure, key community, network pattern, and functional module) analyses during cattle-manure (CM) and biochar (CMB) composting. Amino sugar-N (ASN, 0.914) and hydrolysable unknown-N (-0.724) were main organic-N components mediating NH4+-N in CM and CMB, respectively. Biochar lowered nirK, nirS, and nosZ genes copies, up-regulated nir gene transcripts, and inhibited nitrite reductase (NIR) activity. For nirK-denitrifiers, Luteimonas was predominant taxa influencing NO2--N and amino acid-N (AAN). Unclassified_k_norank_d_Bacteria and unclassified_p_Proteobacteria regulated NO3--N and ASN, respectively. These three genera played crucial roles in mediating NIR activity and nosZ/nirK. For nirS-denitrifiers, Paracoccus and Pseudomonas mediated NH4+-N and AAN, respectively, and they were vital genera regulating NO3--N, ASN and NIR activity. Furthermore, nirK-denitrifiers was major contributor to denitrification. Overall, functional denitrifiers might simultaneously participate in multiple N-transformation processes.
Collapse
Affiliation(s)
- Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Nuo Chang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jizhou Zhang
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Bao J, Lv Y, Qv M, Li Z, Li T, Li S, Zhu L. Evaluation of key microbial community succession and enzyme activities of nitrogen transformation in pig manure composting process through multi angle analysis. BIORESOURCE TECHNOLOGY 2022; 362:127797. [PMID: 35987437 DOI: 10.1016/j.biortech.2022.127797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
This experiment aimed to investigate changes in enzyme activity, microbial succession, and nitrogen conversion caused by different initial carbon-to-nitrogen ratios of 25:1, 35:1 and 20:1 (namely CK, T1 and T2) during pig manure composting. The results showed that the lower carbon-to-nitrogen ratio (T2) after composting retained 19.64 g/kg of TN which was more than 16.74 and 17.32 g/kg in treatments of CK and T1, respectively, but excessive conversion of ammonium nitrogen to ammonia gas resulted in nitrogen loss. Additional straw in T1 could play the role as a bulking agent. After composting, TN in T1 retained the most, and TN contents were 63.51 %, 67.34 % and 56.24 % in CK, T1 and T2, respectively. Network analysis indicated that many types of microorganisms functioned as a whole community at various stages of nitrogen cycle. This study suggests that microbial community structure modification might be a good strategy to reduce ammonium nitrogen loss.
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Yuanfei Lv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Mingxiang Qv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Zhuo Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Tianrui Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
15
|
Sun Y, Shaheen SM, Ali EF, Abdelrahman H, Sarkar B, Song H, Rinklebe J, Ren X, Zhang Z, Wang Q. Enhancing microplastics biodegradation during composting using livestock manure biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119339. [PMID: 35461884 DOI: 10.1016/j.envpol.2022.119339] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 05/06/2023]
Abstract
Biodegradation of microplastics (MPs) in contaminated biowastes has received big scientific attention during the past few years. The aim here is to study the impacts of livestock manure biochar (LMBC) on the biodegradation of polyhydroxyalkanoate microplastics (PHA-MPs) during composting, which have not yet been verified. LMBC (10% wt/wt) and PHA-MPs (0.5% wt/wt) were added to a mixture of pristine cow manure and sawdust for composting, whereas a mixture without LMBC served as the control (CK). The maximum degradation rate of PHA-MPs (22-31%) was observed in the thermophilic composting stage in both mixtures. LMBC addition significantly (P < 0.05) promoted PHA-MPs degradation and increased the carbon loss and oxygen loading of PHA-MPs compared to CK. Adding LMBC accelerated the cleavage of C-H bonds and oxidation of PHA-MPs, and increased the O-H, CO and C-O functional groups on MPs. Also, LMBC addition increased the relative abundance of dominant microorganisms (Firmicutes, Proteobacteria, Deinococcus-Thermus, Bacteroidetes, Ascomycota and Basidiomycota) and promoted the enrichment of MP-degrading microbial biomarkers (e.g., Bacillus, Thermobacillus, Luteimonas, Chryseolinea, Aspergillus and Mycothermus). LMBC addition further increased the complexity and connectivity between dominant microbial biomarkers and PHA-MPs degradation characteristics, strengthened their positive relationship, thereby accelerated PHA-MPs biodegradation, and mitigated the potential environmental and human health risk. These findings provide a reference point for reducing PHA-MPs in compost and safe recycling of MPs contaminated organic wastes. However, these results should be validated with other composting matrices and conditions.
Collapse
Affiliation(s)
- Yue Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza, 12613, Egypt
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Hocheol Song
- Department of Environment, Energy, and Geoinformatics, Sejong University, Guangjin-Gu, Seoul, 05006, Republic of Korea
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Guangjin-Gu, Seoul, 05006, Republic of Korea
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
16
|
Zhao Y, Zhai P, Li B, Jin X, Liang Z, Yang S, Li C, Li C. Banana, pineapple, cassava and sugarcane residue biochars cannot mitigate ammonia volatilization from latosols in tropical farmland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153427. [PMID: 35090906 DOI: 10.1016/j.scitotenv.2022.153427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Ammonia (NH3) volatilization is a major pathway of soil nitrogen loss in tropical farmland, causing many environmental issues. Biochar can improve soil quality and affect soil NH3 volatilization. However, little is known about the effects of tropical crop residue biochar on soil NH3 volatilization in tropical farmland. Therefore, a laboratory incubation study was conducted using four kinds of tropical crop residue biochar (pineapple straw (stem and leaves), banana straw, cassava straw and sugarcane bagasse pyrolyzed at 500 °C) with five addition rates (0.5%, 1%, 2%, 4%, and 6%) to evaluate their impact on NH3 volatilization from tropical latosols. The results showed that NH3 volatilization peaked twice under biochar application, once at 1-5 days and again at 12-16 days. The cumulative NH3 volatilization (0.14-0.47 mg kg-1) of the 20 biochar treatments was higher than that of the control (0.12 mg kg-1). With the increase in the biochar addition rate, the soil pH, soil organic matter (SOM), urease activity, nitrate nitrogen content (NO3--N), nitrification rate and cumulative NH3 volatilization increased gradually, and the 6% biochar treatment resulted in the highest NH3 volatilization loss (0.19-0.47 mg kg-1). The type of biochar is also a main factor affecting soil NH3 volatilization. The cumulative NH3 volatilization was the highest under pineapple straw biochar, as it was 19-43% higher than when the other three biochars were applied. However, sugarcane bagasse biochar had the lowest cumulative NH3 volatilization due to its low quartz, sylvite and calcite contents, lack of -OH hydroxyl groups and high adsorbability. NH3 volatilization was positively correlated with the soil pH, SOM, urease activity, NO3--N and nitrification rate. In conclusion, four tropical crop residue biochars can increase NH3 volatilization in tropical latosols, so reducing NH3 volatilization needs to be further considered in tropical crop residue biochar applications.
Collapse
Affiliation(s)
- Yan Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China
| | - Pengfei Zhai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China
| | - Bo Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China
| | - Xin Jin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China
| | - Zhenghao Liang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China
| | - Shuyun Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China
| | - Changzhen Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China
| | - Changjiang Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical crops, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
17
|
He Y, Huang X, Zhang H, Li H, Zhang Y, Zheng X, Xie L. Insights into the effect of iron-carbon particle amendment on food waste composting: Physicochemical properties and the microbial community. BIORESOURCE TECHNOLOGY 2022; 351:126939. [PMID: 35247558 DOI: 10.1016/j.biortech.2022.126939] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The effects of iron-carbon (Fe-C) particle amendment on organic matter degradation, product quality and functional microbial community in food waste composting were investigated. Fe-C particles (10%) were added to the material and composted for 32 days in a lab-scale composting system. The results suggested that Fe-C particle enhanced organic matter degradation by 12.3%, particularly lignocellulose, leading to a greater humification process (increased by 15.5%). In addition, NO3--N generation was enhanced (15.9%) by nitrification with more active ammonia monooxygenase and nitrite oxidoreductase activities in the cooling and maturity periods. Fe-C particles not only significantly increased the relative abundances of Bacillus and Aspergillus for organic matter decomposition, but also decreased the relative abundances of acid-producing bacteria. RDA analysis demonstrated that the bacterial community was significantly influenced by dissolved organic matter, C/N, NO3--N, humic acid, volatile fatty acids and pH, while electrical conductivity was the key factor affecting the fungal community.
Collapse
Affiliation(s)
- Yingying He
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xia Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Hongning Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Huiping Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yidie Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
18
|
Sun Y, Liu X, Sun L, Men M, Wang B, Deng L, Zhao L, Han Y, Jong C, Bi R, Zhao M, Li X, Liu W, Shi S, Gai Z, Xu X. Microecological insight to fungal structure and key fungal communities regulating nitrogen transformation based on spatial heterogeneity during cow manure composting by multi-angle and multi-aspect analyses. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 142:132-142. [PMID: 35219063 DOI: 10.1016/j.wasman.2022.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Composting is the mainstream technology for the treatment of agricultural solid waste, but limited efforts were made to investigate fungal composition and its contributions to nitrogen transformation in different depths of compost. In this study, spatial distributions of fungi were analyzed using high throughput sequencing by multi-angle analyses, and the key fungal communities determining nitrogen transformation were quantified and identified by multi-aspect analyses during cow manure composting. Multi-angle analyses showed that fungal structure, biomarkers and trophic mode composition varied in different layers, revealing that spatial heterogeneity is the distinctive attribute of composting system. Ascomycota and Basidiomycota were dominant phyla during composting, the two phyla peaked in top and bottom layer respectively. At mesophilic stage, Tremellales, and unclassified Ascomycota (order) were biomarkers in top and middle layer respectively, and so were Remersonia, Pyrenochaetopsis, and Wallemia in bottom layer by LEfSe analysis. Based on multi-aspect analyses, Unclassified Dothideomycetes mainly affected NH4+-N transformation both in top (1.2816***) and middle layers (1.1726*). Trichocladium asperum (0.9536***) and Zopfiella (-0.9484***) mainly affected TN transformation in top layer. Guehomyces pullulans (-0.9684**) and Preussia (-1.0508**) regulated NO3--N transformation in middle layer. Thermomyces lanuginosus (0.7127***) and Typhula sp. UW973129 (0.7298***) were the key species promoting TN and C/N transformation in bottom layer, respectively. Interestingly, different fungal communities showed a complex network interaction driving nitrogen transformation, and the abundance of microbial community could be conducive to characterizing nitrogen transformation in the vertical space of composting.
Collapse
Affiliation(s)
- Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinda Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengqi Men
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liyan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chol Jong
- College of Agriculture, Kimjewon Haeju University of Agriculture, Haeju City, Hwanghae South Province 999093, Democratic People's Republic of Korea
| | - Ruixin Bi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mingming Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhaoxue Gai
- School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China.
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
19
|
Wang N, Ren L, Zhang J, Kumar Awasthi M, Yan B, Zhang L, Wan F, Luo L, Huang H, Zhao K. Activities of functional enzymes involved in C, N, and P conversion and their stoichiometry during agricultural waste composting with biochar and biogas residue amendments. BIORESOURCE TECHNOLOGY 2022; 345:126489. [PMID: 34871723 DOI: 10.1016/j.biortech.2021.126489] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
This experiment was carried out to explore the effects of biochar, biogas residue and their combination amendment on enzyme activities and their stoichiometry during agricultural waste composting. A comprehensive analysis of the variation in, and stoichiometric correlations between, β-glucosidase (BG), N-acetylglucosaminidase (NAG), leucine aminopeptidase (LAP), and alkaline phosphatase (AKP) were determined. The results showed that biochar, biogas residue, and their combined addition significantly increased those enzyme activities. The potential C:P and N:P acquisition activities represented by ln(BG): ln(AKP) and ln(LAP + NAG): ln(AKP), were significantly decreased with biogas residue addition. BG, NAG and LAP were significantly negatively correlated with temperature, organic matter and water-soluble carbon. Redundancy analysis also showed that moisture and water-soluble carbon were significantly related to the variations of enzyme activities. Biochar and biogas residue changed the characteristics of the composting substrate, thus affecting the activity and stoichiometry of functional enzymes involved in C, N and P cycling.
Collapse
Affiliation(s)
- Nanyi Wang
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, 410128, China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Keqi Zhao
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| |
Collapse
|