1
|
Xu H, Wei S, Chen S, Wang K, Holmes DE, Yuan Q. Anaerobic stabilization and landscape utilization of rural sewage sludge from the enhanced membrane coagulation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177902. [PMID: 39674149 DOI: 10.1016/j.scitotenv.2024.177902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/16/2024]
Abstract
In this study, enhanced membrane coagulation (EMC) sludge was subjected to various alkaline (pH 7.2, 10, and 11), temperature (35 °C and 55 °C), and duration (0.5 h and 1 day) pretreatment conditions before being inoculated into biogas reactors operated for 176 days. Optimal pretreatment (pH 11, 55 °C, and 1 day) effectively hydrolyzed particulate COD to SCOD (8435 ± 121 mg/L). Higher pH levels also facilitated the dissolution of amphoteric aluminum-phosphorus (Al-P) compounds, enhancing phosphorus release (91.8 mg/L) from the sludge. This alkaline pretreatment, especially under optimal conditions, significantly increased biogas production and methane concentrations in long-term semi-continuous anaerobic digesters, with methane yields of 188.4 mL/gVS. The microbial community structure in all three reactors exhibited similar shifts, with saccharolytic and proteolytic fermentative bacteria dominating early stages and Thermovirga and an uncultured bacterium (Run-SP154) prevalent in later stages. Methanothrix, an acetotrophic methanogen, dominated the archaeal community in the inoculum (>91 %) and remained prominent (>40 %) throughout the experiment, while hydrogenotrophic methanogens from the genus Methanolinea increased over time, accounting for >24 % of the sequences in the final stages. Additionally, the feasibility of using EMC digestate as fertilizer for mulberry plants was tested, showing that digestate from optimally pretreated sludge promoted better growth than conventional chemical fertilizers. This suggests that this approach is a promising method for decentralized sewage treatment systems.
Collapse
Affiliation(s)
- Heng Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Shanghui Wei
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Song Chen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Road, Springfield, MA 01119, United States
| | - Quan Yuan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Liao Q, Sun L, Lu H, Qin X, Liu J, Zhu X, Li XY, Lin L, Li RH. Iron driven organic carbon capture, pretreatment, recovery and upgrade in wastewater: Process technologies, mechanisms, and implications. WATER RESEARCH 2024; 263:122173. [PMID: 39111213 DOI: 10.1016/j.watres.2024.122173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/26/2024]
Abstract
Wastewater treatment plants face significant challenges in transitioning from energy-intensive systems to carbon-neutral, energy-saving systems, and a large amount of chemical energy in wastewater remains untapped. Iron is widely used in modern wastewater treatment. Research shows that leveraging the coupled redox relationship of iron and carbon can redirect this energy (in the form of carbon) towards resource utilization. Therefore, re-examining the application of iron in existing wastewater carbon processes is particularly important. In this review, we investigate the latest research progress on iron for wastewater carbon flow restructuring. During the iron-based chemically enhanced primary treatment (CEPT) process, organic carbon is captured into sludge and its bioavailability is enhanced through iron-based advanced oxidation processes (AOP) pretreatment, further being recovered or upgraded to value-added products in anaerobic biological processes. We discuss the roles and mechanisms of iron in CEPT, AOP, anaerobic biological processes, and biorefining in driving organic carbon conversion. The dosage of iron, as a critical parameter, significantly affects the recovery and utilization of sludge carbon resources, particularly by promoting effective electron transfer. We propose a pathway for beneficial conversion of wastewater organic carbon driven by iron and analyze the benefits of the main products in detail. Through this review, we hope to provide new insights into the application of iron chemicals and current wastewater treatment models.
Collapse
Affiliation(s)
- Quan Liao
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lianpeng Sun
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Hui Lu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Xianglin Qin
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Junhong Liu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xinzhe Zhu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Xiao-Yan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Lin Lin
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Ruo-Hong Li
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| |
Collapse
|
3
|
Zarina R, Mezule L. Enzymatic hydrolysis of waste streams originating from wastewater treatment plants. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:104. [PMID: 39026332 PMCID: PMC11264863 DOI: 10.1186/s13068-024-02553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Achieving climate neutrality is a goal that calls for action in all sectors. The requirements for improving waste management and reducing carbon emissions from the energy sector present an opportunity for wastewater treatment plants (WWTPs) to introduce sustainable waste treatment practices. A common biotechnological approach for waste valorization is the production of sugars from lignocellulosic waste biomass via biological hydrolysis. WWTPs produce waste streams such as sewage sludge and screenings which have not yet been fully explored as feedstocks for sugar production yet are promising because of their carbohydrate content and the lack of lignin structures. This study aims to explore the enzymatic hydrolysis of various waste streams originating from WWTPs by using a laboratory-made and a commercial cellulolytic enzyme cocktail for the production of sugars. Additionally, the impact of lipid and protein recovery from sewage sludge prior to the hydrolysis was assessed. RESULTS Treatment with a laboratory-made enzyme cocktail produced by Irpex lacteus (IL) produced 31.2 mg sugar per g dry wastewater screenings. A commercial enzyme formulation released 101 mg sugar per g dry screenings, corresponding to 90% degree of saccharification. There was an increase in sugar levels for all sewage substrates during the hydrolysis with IL enzyme. Lipid and protein recovery from primary and secondary sludge prior to the hydrolysis with IL enzyme was not advantageous in terms of sugar production. CONCLUSIONS The laboratory-made fungal IL enzyme showed its versatility and possible application beyond the typical lignocellulosic biomass. Wastewater screenings are well suited for valorization through sugar production by enzymatic hydrolysis. Saccharification of screenings represents a viable strategy to divert this waste stream from landfill and achieve the waste treatment and renewable energy targets set by the European Union. The investigation of lipid and protein recovery from sewage sludge showed the challenges of integrating resource recovery and saccharification processes.
Collapse
Affiliation(s)
- Ruta Zarina
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas Iela 6a, Riga, Latvia.
| | - Linda Mezule
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas Iela 6a, Riga, Latvia
| |
Collapse
|
4
|
To MH, Wang H, Miao Y, Kaur G, Roelants SLKW, Lin CSK. Optimal preparation of food waste to increase its utility for sophorolipid production by Starmerella bombicola. BIORESOURCE TECHNOLOGY 2023; 379:128993. [PMID: 37011850 DOI: 10.1016/j.biortech.2023.128993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Secondary feedstocks, such as food waste (FW), have been used for yeasts (e.g. Starmerella bombicola) to produce sophorolipids (SLs), which are commercially available biosurfactants. However, the quality of FW varies by location and season and may contains chemicals that inhibit SLs production. Therefore, it is crucial to identify such inhibitors and, if possible, remove them, to ensure efficient utilization. In this study, large scale FW was first analysed to determine the concentration of potential inhibitors. Lacticacid, acetic acid and ethanol were identified and found to be inhibitors of the growth of S. bombicola and its SLs production. Various methods were then evaluated for their ability to remove these inhibitors. Finally, a simple and effective strategy for removing inhibitors from FW was developed that complied with the 12 principles of green chemistry and could be adopted by industry for high SLs production.
Collapse
Affiliation(s)
- Ming Ho To
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Huaimin Wang
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, TX 78712-1589, USA
| | - Yahui Miao
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Bio Base Europe Pilot Plant, Ghent, Belgium
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Wu Z, Ji S, Li YY, Liu J. A review of iron use and recycling in municipal wastewater treatment plants and a novel applicable integrated process. BIORESOURCE TECHNOLOGY 2023; 379:129037. [PMID: 37037337 DOI: 10.1016/j.biortech.2023.129037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Chemical methods are expected to play an increasingly important role in carbon-neutral municipal wastewater treatment plants. This paper briefly summarises the enhancement effects of using iron salts in wastewater and sludge treatment processes. The costs and environmental concerns associated with the widespread use of iron salts have also been highlighted. Fortunately, the iron recovery from iron-rich sludge provides an opportunity to solve these problems. Existing iron recovery methods, including direct acidification and thermal treatment, are summarised and show that acidification treatment of FeS digestate from the anaerobic digestion-sulfate reduction process can increase the iron and sulphur recycling efficiency. Therefore, a novel applicable integrated process based on iron use and recycling is proposed, and it reduces the iron salts dosage to 4.2 mg/L and sludge amount by 80%. Current experimental research and economic analysis of iron recycling show that this process has broad application prospects in resource recovery and sludge reduction.
Collapse
Affiliation(s)
- Zhangsong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shenghao Ji
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|