1
|
Liu Y, Zhang Z, Fang Y, Song Y, Li J, Feng Y. Assessing the long-term impact of incorporating GAC and Fe&G mediators for enhancing phenol containing simulated wastewater treatment in UASB reactor. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138459. [PMID: 40334595 DOI: 10.1016/j.jhazmat.2025.138459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Phenol containing wastewater (PCW) is highly toxic and difficult to be treated by traditional methods. This study utilized granular activated carbon (GAC) and Fe (Sponge iron) &GAC (Fe&G) in a laboratory-scale UASB reactor to mitigate the toxicity of phenol containing simulated wastewater (PCSW) and enhance treatment performance. Compared with GAC, Fe&G mediators achieves approximately 7 % and 24 % higher removal rates for COD and phenolic compounds, respectively. The methane accumulation in Fe&G group was about 10 % higher than that in GAC group and 22 % higher than that in blank group. Microbial analysis showed that compared with GAC, Fe&G mediators could enrich Petronas and Methanothrix to intensify Direct Interspecies Electron Transfer (DIET) to augment PCSW treatment and boost methane production. PICRUSt analysis showed that these mediators enriched key genes such as TCA cycle and CO2 methanogenesis pathway to improve microbial resistance to PCSW toxicity and enhance microbial metabolism. This study provides a new method for anaerobic treatment of highly polluted industrial wastewater.
Collapse
Affiliation(s)
- Yanbo Liu
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanbin Fang
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yanfang Song
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Jiannan Li
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, China.
| |
Collapse
|
2
|
Hui Y, Liu R, Mei Z, Xu A. Engineering efficient carrageenan materials for simultaneously removing herbicide, eight anionic/cationic dyes and metal ion contaminants and adsorption mechanism. Int J Biol Macromol 2025; 302:140551. [PMID: 39903989 DOI: 10.1016/j.ijbiomac.2025.140551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Developing highly efficient biomass-based adsorbents capable of simultaneously removing various water contaminants is highly desired amidst the growing depletion of fossil resources. Herein, a versatile κ-carrageenan/polyethyleneimine/glycerol triglycidyl ether (KC/PEI/GTE) biomass adsorbent was engineered and succeeded in removing herbicide, eight anionic/cationic dyes and metal ion from solutions. Systematic investigations examined the effects of adsorption conditions on the carrageenan adsorbent's performance towards these contaminants from five perspectives. Additionally, the impacts of four cationic chloride salts and four anionic sodium salts in solutions on contaminant adsorption and adsorbent recyclability were evaluated. Attractingly, the KC/PEI/GTE demonstrates exceptional adsorption performance, recycling capability and application potential, notably outperforming most reported adsorbents (adsorption capacities (removal efficiencies) of sodium 2,4-dichlorophenoxyacetate (2,4-D), acid blue-25 (AB25), methyl orange (MO) and methylene blue (MB) are 365 mg g-1 (91 %), 2357 mg g-1 (91 %), 743 mg g-1 (93 %) and 91 mg g-1 (90 %), respectively). A thermodynamic, four kinetic and four isothermal models, SEM, FT-IR and XPS analyses revealed that hydrogen bonding and electrostatic interactions are the primary driving forces for contaminants removals. Benefiting from its outstanding advantages, the adsorbent developed in this study shows a great potential for applications in wastewater purification.
Collapse
Affiliation(s)
- Yao Hui
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, PR China
| | - Rukuan Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Zijing Mei
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, PR China
| | - Airong Xu
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, PR China.
| |
Collapse
|
3
|
Zhang M, Lin K. Unintended polyhalogenated carbazole production during advanced oxidation of coking wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134649. [PMID: 38772108 DOI: 10.1016/j.jhazmat.2024.134649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Polyhalogenated carbazoles (PHCZs) are emerging as dioxin-like global pollutants, yet their environmental origins are not fully understood. This study investigates the application of the Fenton process in coking wastewater treatment, focusing on its dual role in carbazole removal and unintended PHCZ formation. The common halide ions (Cl- and Br-) in coking wastewater, especially Br- ions, exerted a notable impact on carbazole removal. Particularly, the influence of Br- ions was more significant, not only enhancing carbazole removal but also shaping the congener composition of PHCZ formation. Elevated halide ion concentrations were associated with the heightened formation of higher halogenated carbazoles. The Fenton reagent dosage ratio was identified as a crucial factor affecting the congener composition of PHCZs and their toxic equivalency value. The coexisting organic substance (i.e., phenol) in coking wastewater was observed to inhibit PHCZ formation, likely through competitive reactions with carbazole. Intriguingly, ammonium (NH4+) facilitated the generation of higher and mixed halogenated carbazoles, possibly due to the generation of nitrogen-containing brominating agents with stronger bromination capacity. This study underscores the importance of a comprehensive assessment, considering both substrate removal and potential byproduct formation, when employing the Fenton process for saline wastewater treatment.
Collapse
Affiliation(s)
- Meng Zhang
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Kunde Lin
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Dong J, Chen Z, Han F, Hu D, Ge H, Jiang B, Yan J, Zhuang S, Wang Y, Cui S, Liang Z. Performance of a novel up-flow electrocatalytic hydrolysis acidification reactor (UEHAR) coupled with anoxic/oxic system for treating coking wastewater. WATER RESEARCH 2024; 257:121670. [PMID: 38723347 DOI: 10.1016/j.watres.2024.121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
In this study, the performance of a novel up-flow electrocatalytic hydrolytic acidification reactor (UEHAR) and anoxic/oxic (ANO2/O2) combined system (S2) was compared with that of a traditional anaerobic/anoxic/oxic (ANA/ANO1/O1) system (S1) for treating coking wastewater at different hydraulic retention time (HRT). The effluent non-compliance rates of chemical oxygen demand (COD) of S2 were 45 %, 35 %, 25 % and 55 % lower than S1 with HRT of 94, 76, 65 and 54 h. The removal efficiency of benzene, toluene, ethylbenzene and xylene (BTEX) in S2 was 10.6 ± 2.4 % higher than that in S1. The effluent concentration of volatile phenolic compounds (VPs) in S2 was lower than 0.3 mg/L. The dehydrogenase activity (DHA) and adenosine triphosphate (ATP) of O2 were enhanced by 67.2 ± 26.3 % and 40.6 ± 14.2 % compared with O1, respectively. Moreover, COD was used to reflect the mineralization index of organic matter, and the positive correlation between COD removal rate and microbial activity, VPs, and BTEX was determined. These results indicated that S2 had extraordinary microbial activity, stable pollutant removal ability, and transcendental effluent compliance rate.
Collapse
Affiliation(s)
- Jian Dong
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Zhaobo Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China.
| | - Fei Han
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Hui Ge
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Bei Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Jitao Yan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Shuya Zhuang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Yifan Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Shiming Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Zhibo Liang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| |
Collapse
|
5
|
Geng Y, Hu H, Wu Y, Li Z, Lu Y, Zhang P, Bai J. Facilitation of coke gasification by coking wastewater and its degradation properties in thermochemical reactions. RSC Adv 2024; 14:17724-17732. [PMID: 38832246 PMCID: PMC11145131 DOI: 10.1039/d4ra01344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
The thermochemical reaction between coking wastewater and gasification-coke is a new way to achieve efficient and clean use of coal and solve the problem of coking wastewater treatment in the Gansu Longdong region. To further investigate the thermochemical reaction characteristics of coking wastewater and gasification-coke, this paper explores the effect of coking wastewater on syngas production from coke gasification at 1000 °C, the degradation effect of organic pollutants in coking wastewater, the thermochemical reactivity of gasification-coke, and the reasons why wastewater promotes coke gasification and wastewater degradation. The results showed that the thermochemical reaction of coking wastewater with gasification-coke not only facilitates the improvement of syngas yield and low-level calorific value but also improves the thermochemical reactivity of gasification-coke. Notably, phenol in coking wastewater plays a major role in promoting the gasification of gasification-coke. During the thermochemical reaction, the organic pollutants in the wastewater were effectively degraded, the degradation rate of CODCr reached more than 85%, and the degradation of organic pollutants reached more than 75%. Phenol water and coking wastewater can not only improve the dispersion of the ash phase on the surface of gasification-coke, effectively inhibiting the sintering and agglomeration of the ash phase in gasification-coke, but also change the type and number of organic functional groups in gasification-coke. Therefore, coking wastewater can promote the gasification of coke. The thermochemical reaction between coke wastewater and gasification-coke can simultaneously promote coke gasification and the degradation of coke wastewater and achieve the resourceful use of coke wastewater.
Collapse
Affiliation(s)
- Yang Geng
- Gansu Key Laboratory of Efficient Utilization of Oil, Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University Qingyang 745000 Gansu China
| | - Haobin Hu
- Gansu Key Laboratory of Efficient Utilization of Oil, Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University Qingyang 745000 Gansu China
| | - Yun Wu
- Gansu Key Laboratory of Efficient Utilization of Oil, Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University Qingyang 745000 Gansu China
| | - Zhijun Li
- Gansu Key Laboratory of Efficient Utilization of Oil, Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University Qingyang 745000 Gansu China
| | - Yani Lu
- Gansu Key Laboratory of Efficient Utilization of Oil, Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University Qingyang 745000 Gansu China
| | - Penghui Zhang
- Gansu Key Laboratory of Efficient Utilization of Oil, Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University Qingyang 745000 Gansu China
| | - Jinfeng Bai
- Research Center of Coal Chemical Engineering Liaoning, School of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 Liaoning China
| |
Collapse
|
6
|
Jesús RI, Laura M, Yolanda FN, Beatriz SP. Removal of PAHs, TSS, oils and fats from ammonium-rich coke wastewater by granular filtration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120812. [PMID: 38615397 DOI: 10.1016/j.jenvman.2024.120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Coke wastewater is a complex industrial wastewater due to its high content of toxic compounds such as cyanides, thiocyanates, phenols, tar, oils, and fats. After a series of treatments, wastewater with a high ammonium content is obtained (around 4,150 mg·L-1). A stripping process is used to reduce it. Certain pollutants in the influent, such as tar, polycyclic aromatic hydrocarbons (PAHs), oils, fats and total suspended solids (TSS), interfere with stripping and therefore must be previously removed. In this study, the performance of a pilot-scale airlift sand filter was evaluated under real conditions for the reduction of the concentration of tar, PAHs, oils, fats and TSS, before stripping. Prior to the sand filter, a cationic flocculant was added to the influent (2 ppm). High (10 mm.min-1), medium (7.5 mm.min-1) and low sand speeds (1.9-2.6 mm.min-1) were assessed. The latter conditions gave the best results: a decrease of 98.2% in TSS, 99.7% in oils, fats and grease and 97.6% in PAHs. The final effluent (≤ 1.6 mg PAHs·L-1, ≤ 5 mg TSS·L-1 and ≤ 0.05 mg·L-1 of fats, oils and grease) was suitable for the stripping process.
Collapse
Affiliation(s)
- Rodríguez-Iglesias Jesús
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain.
| | - Megido Laura
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain
| | - Fernández-Nava Yolanda
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain
| | - Suárez-Peña Beatriz
- Department of Materials Science and Metallurgical Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain
| |
Collapse
|
7
|
Zhu Q, Liu X, Xu X, Dong X, Xiang J, Fu B, Huang Y, Wang Y, Fan G, Zhang L. Mn-Co-Ce/biochar based particles electrodes for removal of COD from coking wastewater by 3D/HEFL system: Characteristics, optimization, and mechanism. ENVIRONMENTAL RESEARCH 2024; 247:118359. [PMID: 38320717 DOI: 10.1016/j.envres.2024.118359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 02/10/2024]
Abstract
In this work, the Mn, Co, Ce co-doped corn cob biochar (MCCBC) as catalytic particle electrodes in a three-dimensional heterogeneous electro-Fenton-like (3D-HEFL) system for the efficient degradation of coking wastewater was investigated. Various characterization methods such as SEM, EDS, XRD, XPS and electrochemical analysis were employed for the prepared materials. The results showed that the MCCBC particle electrodes had excellent electrochemical degradation performances of COD in coking wastewater, and the COD removal and degradation rates of the 3D/HEFL system were 85.35% and 0.0563 min-1 respectively. RSM optimized conditions revealed higher COD removal rate at 89.23% after 31.6 min of electrolysis. The efficient degradability and wide adaptability of the 3D/HEFL system were due to its beneficial coupling mechanism, including the synergistic effect between the system factors (3D and HEFL) as well as the synergistic interactions between the ROS (dominated by •OH and supplemented by O2•-) in the system. Moreover, the COD removal rate of MCCBC could still remain at 81.41% after 5 cycles with a lower ion leaching and a specific energy consumption of 11.28 kWh kg-1 COD. The superior performance of MCCBC, as catalytic particle electrodes showed a great potential for engineering applications for the advanced treatment of coking wastewater.
Collapse
Affiliation(s)
- Qiaoyun Zhu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xueling Liu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiaorong Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiaoyu Dong
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jingjing Xiang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Benquan Fu
- R&D Center of Wuhan Iron and Steel Company, Wuhan, 430080, China
| | - Yanjun Huang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yi Wang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Guozhi Fan
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Lei Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
8
|
Wang S, Li J, Wang W, Zhou C, Chi Y, Wang J, Li Y, Zhang Q. An overview of recent advances and future prospects of three-dimensional biofilm electrode reactors (3D-BERs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118192. [PMID: 37285769 DOI: 10.1016/j.jenvman.2023.118192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
Three-dimensional biofilm electrode reactors (3D-BERs) have attracted extensive attention in recent years due to their wide application range, high efficiency and energy saving. On the basis of traditional bio-electrochemical reactor, 3D-BERs are filled with particle electrodes, also known as the third electrodes, which can not only be used as a carrier for microbial growth, but also improve the electron transfer rate of the whole system. This paper reviews the constitution, advantages and basic principles of 3D-BERs as well as current research status and progress of 3D-BERs in recent years. The selection of electrode materials, including cathode, anode and particle electrode are listed and analyzed. Different constructions of reactors, like 3D-unipolar extended reactor and coupled 3D-BERs are introduced and discussed. Various contaminants degraded by 3D-BERs including nitrogen, azo dyes, antibiotics and the others are calculated and the corresponding degradation effects are described. The influencing factors and mechanisms are also introduced. At the same time, according to the research advances of 3D-BERs, the shortcomings and weakness of this technology in the current research process are analyzed, and the future research direction of this technology is prospected. This review aims to summarize recent studies of 3D-BERs in bio-electrochemical reaction and open a bright window to this booming research theme.
Collapse
Affiliation(s)
- Siyuan Wang
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| | - Jianchen Li
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| | - Wenjun Wang
- School of Resources and Environment, Carbon Neutralization Research Institute, Hunan University of Technology and Business, Changsha, 410205, China.
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yanfeng Chi
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China.
| | - Jianhui Wang
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| | - Youcai Li
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| | - Qingbo Zhang
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| |
Collapse
|
9
|
Han JC, Ahmad M, Yousaf M, Rahman SU, Sharif HMA, Zhou Y, Yang B, Huang Y. Strategic analysis on development of simultaneous adsorption and catalytic biodegradation over advanced bio-carriers for zero-liquid discharge of industrial wastewater. CHEMOSPHERE 2023; 332:138871. [PMID: 37172628 DOI: 10.1016/j.chemosphere.2023.138871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
With rapid industrial development, millions of tons of industrial wastewater are produced that contain highly toxic, carcinogenic, mutagenic compounds. These compounds may consist of high concentration of refractory organics with plentiful carbon and nitrogen. To date, a substantial proportion of industrial wastewater is discharged directly to precious water bodies due to the high operational costs associated with selective treatment methods. For example, many existing treatment processes rely on activated sludge-based treatments that only target readily available carbon using conventional microbes, with limited capacity for nitrogen and other nutrient removal. Therefore, an additional set-up is often required in the treatment chain to address residual nitrogen, but even after treatment, refractory organics persist in the effluents due to their low biodegradability. With the advancements in nanotechnology and biotechnology, novel processes such as adsorption and biodegradation have been developed, and one promising approach is integration of adsorption and biodegradation over porous substrates (bio-carriers). Regardless of recent focus in a few applied researches, the process assessment and critical analysis of this approach is still missing, and it highlights the urgency and importance of this review. This review paper discussed the development of the simultaneous adsorption and catalytic biodegradation (SACB) over a bio-carrier for the sustainable treatment of refractory organics. It provides insights into the physico-chemical characteristics of the bio-carrier, the development mechanism of SACB, stabilization techniques, and process optimization strategies. Furthermore, the most efficient treatment chain is proposed, and its technical aspects are critically analysed based on updated research. It is anticipated that this review will contribute to the knowledge of academia and industrialist for sustainable upgradation of existing industrial wastewater treatment plants.
Collapse
Affiliation(s)
- Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China; School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuefei Huang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| |
Collapse
|
10
|
Zhang H, Ling Z, Ma J, Nie Y. Biodegradability enhancement of phenolic wastewater using hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2023; 367:128199. [PMID: 36307029 DOI: 10.1016/j.biortech.2022.128199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
A novel hydrothermal pretreatment was applied for the biochemical treatment of phenolic wastewater with high concentrations of phenolic substances. The results demonstrated that 250 °C was the reaction temperature dividing point for complete oxidation, hydrothermal gasification, and amino release from carbonaceous organics in phenolic wastewater. Before the dividing point reached, some of the large molecules were hydrolyzed into small molecules of volatile phenolic substances that were easily adsorbed by the activated sludge. After the integrated hydrothermal pretreatment and anaerobic/aeration process, the removal rate of volatile phenolswas respectively reached by 97 % and 88 % with hydrothermal temperature of 250 °C and without pretreatment. Functional microorganisms (i.e., Chloroflexi) responsible for aromatic compounds degradation were enriched, thus the dioxygenases, dehydrogenase reactions, and meta-cleavage of catechol were enhanced. This work provided an innovative approach to remove phenolic substances from phenolic wastewater, and in-depth understandings of microbial responses in biochemical systems.
Collapse
Affiliation(s)
- Huiwen Zhang
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Zhang Ling
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Jiangya Ma
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yong Nie
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| |
Collapse
|
11
|
Yang L, Liu Y, Li C, Liu Z, Liu X, Wei C, Yang Z, Zhang A. Biodegradation time series characteristics and metabolic fate of different aromatic compounds in the biochemical treatment process of coal chemical wastewater. BIORESOURCE TECHNOLOGY 2022; 361:127688. [PMID: 35901864 DOI: 10.1016/j.biortech.2022.127688] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
In this study, the biochemical treatment system of coal chemical wastewater (CCW) was constructed to degrade aromatic compounds. The biodegradation time series characteristics of 8 benzene series (BTEX), 6 phenols, 10 polycyclic aromatic hydrocarbons (PAHs), and 3 nitrogen heterocyclic compounds (NHCs) were detected. The aim was to clarify the storage characteristics and dynamic transformation in water, EPS, and cells of these aromatic compounds. The results showed that BTEX and NHCs were more easily degraded than PAHs and phenols. Furthermore, aromatic compounds were initially adsorbed into EPS from water by microorganisms. Then, some were degraded, and others were transferred into the cell. Finally, they were completely degraded. The percentage of surplus content with them in EPS and cells were PAHs > phenols > NHCs = BTEX. The study could lay a theoretical foundation for the regulation and harmless treatment of the CCW in the stable operation of the biochemical treatment system.
Collapse
Affiliation(s)
- Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Chen Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xingshe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chunxiao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhuangzhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
12
|
Kang J, Liu Z, Yu C, Wang Y, Wang X. Degradation performance of high-concentration coking wastewater by manganese oxide ore acidic oxidation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:367-379. [PMID: 35906913 DOI: 10.2166/wst.2022.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The degradation of coking wastewater using a manganese oxide ore acidic oxidation was investigated. This work was performed in three stages. Firstly, the advantageous degradation conditions were measured by the degradation tests, and under the optimal conditions percentage degradation was obtained of 91.6% chemical oxygen demand measured by potassium dichromate oxidation (CODcr), 94.7% total nitrogen (TN), 98.3% phenols, 98.2% fatty acid, 89.5% tar, and 98.9% sulphide for the oxidized effluent, simultaneously cogenerating a Mn2+concentration of 46.2 g/L for Mn-electrolytic stock solution. Secondly, the transformation analysis of the special chemical group of coking wastewater contaminants illustrated that the employment of manganese oxide ore generated the degradation of low and high molecular weight organics, especially causing polymers to break down into oligomers. Thirdly, the electrochemical characteristics of the interface between wastewater and ore revealed that the contaminant degradation of coking wastewater greatly depended on the oxidation capacity of the surface oxide species, involving a simple answer to the MnO2 oxidation for small-molecule organic materials and a strengthening response to the MnO·OH oxidation for high-weight molecule organic substances. The treatment of coking wastewater using the Mn-oxide ore acidic oxidation process is an effective and value-added method, which is particularly applicable to high-concentration coking wastewater.
Collapse
Affiliation(s)
- Jinxing Kang
- China ENFI Engineering Co., Ltd, China Minmetals, No. 12, Fuxing Road, Haidian, Beijing, China, 100038 E-mail:
| | - Zhiguo Liu
- China ENFI Engineering Co., Ltd, China Minmetals, No. 12, Fuxing Road, Haidian, Beijing, China, 100038 E-mail:
| | - Chen Yu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, Shandong, China, 266580
| | - Yayun Wang
- China ENFI Engineering Co., Ltd, China Minmetals, No. 12, Fuxing Road, Haidian, Beijing, China, 100038 E-mail:
| | - Xin Wang
- China ENFI Engineering Co., Ltd, China Minmetals, No. 12, Fuxing Road, Haidian, Beijing, China, 100038 E-mail:
| |
Collapse
|
13
|
Wu ZY, Xu J, Wu L, Ni BJ. Three-dimensional biofilm electrode reactors (3D-BERs) for wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 344:126274. [PMID: 34737054 DOI: 10.1016/j.biortech.2021.126274] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Three-dimensional biofilm electrode reactors (3D-BERs) are highly efficient in refractory wastewater treatment. In comparison to conventional bio-electrochemical systems, the filled particle electrodes act as both electrodes and microbial carriers in 3D-BERs. This article reviews the conception and basic mechanisms of 3D-BERs, as well as their current development. The advantages of 3D-BERs are illustrated with an emphasis on the synergy of electricity and microorganisms. Electrode materials utilized in 3D-BERs are systematically summarized, especially the critical particle electrodes. The configurations of 3D-BERs and their integration with wastewater treatment reactors are introduced. Operational parameters and the adaptation of 3D-BERs to varieties of wastewater are discussed. The prospects and challenges of 3D-BERs for wastewater treatment are then presented, and the future research directions are proposed. We believe that this timely review will help to attract more attentions on 3D-BERs investigation, thus promoting the potential application of 3D-BERs in wastewater treatment.
Collapse
Affiliation(s)
- Zhen-Yu Wu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Juan Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, No. 20 Cuiniao Road, ChenJiazhen, Shanghai 202162, China.
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
14
|
Zhao J, Xu X, Liu Z, Bai X, Yang Y, Li X, Wang Y, Liu W, Zhu Y. Improvement of stability and reduction of energy consumption for Ti-based MnO x electrode by Ce and carbon black co-incorporation in electrochemical degradation of ammonia nitrogen. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2278-2287. [PMID: 34810311 DOI: 10.2166/wst.2021.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ti-based electrode coated with MnOx catalytic layer has presented superior electrochemical activity for degradation of organic pollution in wastewater, however, the industrial application of Ti-based MnOx electrode is limited by the poor stability of the electrode. In this study, the novel Ti-based MnOx electrodes co-incorporated with rare earth (Ce) and conductive carbon black (C) were prepared by spraying-calcination method. The Ti/Ce:MnOx-C electrode, with uniform and integrated surface and enhanced Mn(IV) content by C and Ce co-incorporation, could completely remove ammonia nitrogen (NH4+-N) with N2 as the main product. The cell potential and energy consumption of Ti/Ce:MnOx-C electrode during the electrochemical process was significantly reduced compared with Ti/MnOx electrode, which mainly originated from the enhanced electrochemical activity and reduced charge transfer resistance by Ce and C co-incorporation. The accelerated lifetime tests in sulfuric acid showed that the actual service lifetime of Ti/Ce:MnOx-C was ca. 25 times that of Ti/MnOx, which demonstrated the significantly promoted stability of MnOx-based electrode by Ce and C co-incorporation.
Collapse
Affiliation(s)
- Jiao Zhao
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China E-mail:
| | - Xuelu Xu
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Zehui Liu
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China E-mail:
| | - Xiaodan Bai
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China E-mail:
| | - Yan Yang
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China E-mail:
| | - Xiaoyi Li
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China E-mail:
| | - Yin Wang
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China E-mail:
| | - Weifeng Liu
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China E-mail:
| | - Yimin Zhu
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China E-mail:
| |
Collapse
|