1
|
Dai B, Zhou J, Wang Z, Yang Y, Wang S, Yang S, Xia S. Utilizing waste-derived carbon source for partial denitrification-anammox process: Wastewater- and sludge-derived organics. ENVIRONMENTAL RESEARCH 2025; 280:121972. [PMID: 40436199 DOI: 10.1016/j.envres.2025.121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/14/2025] [Accepted: 05/25/2025] [Indexed: 06/01/2025]
Abstract
The partial denitrification-anammox (PDA) process is a promising and sustainable technology for nitrogen removal in wastewater treatment. It is well-suited for mainstream nitrogen removal from municipal wastewater, polishing of anammox for ammonia-rich wastewater treatment, and simultaneous treatment of nitrate and ammonia containing wastewater. While the PDA process reduces external carbon source consumption by over 40 %, it still requires additional carbon input. Wastewater treatment systems inherently contain organics in both wastewater and sludge, but these sources are often inaccessible to denitrifiers. Efficient utilization of these organics is essential for advancing energy-efficient wastewater treatment. This review provides a comprehensive overview of recent advances in utilizing organics derived from wastewater and waste-sludge. Key developments in hydrolytic acidification and Fe-C micro-electrolysis are highlighted for enhancing the biodegradability and conversion of refractory organics. Strategies such as extended hydraulic retention time, functional microbial enrichment, enzymatic pretreatment, and microbial co-cultures are also discussed to improve readily biodegradable organics supply and nitrogen removal. This review further explores emerging applications of PDA process that leverage carbon sources from wastewater treatment systems. Future research should prioritize the efficient integration of these organics throughout PDA process and develop cost-effective methods to address by-products like ammonia-nitrogen. Moreover, a practical roadmap is proposed, outlining optimization of fermentation conditions, system integration, stability under real-world conditions, and techno-economic evaluations. This review aims to provide a comprehensive framework to unlock the full-scale application of PDA using waste-derived carbon, advancing toward carbon-neutral and cost-effective wastewater treatment.
Collapse
Affiliation(s)
- Ben Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zuobin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center of Dredging Technology and Equipment, Key Lab of Dredging Technology, CCCC, Shanghai, 200082, China
| | - Yifeng Yang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai, 200092, China
| | - Sen Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shaobo Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
2
|
Dai B, Yang Y, Wang Z, Zhou J, Wang Z, Zhang X, Xia S. Refractory dissolved organic matters in sludge leachate trigger the combination of anammox and denitratation for advanced nitrogen removal. WATER RESEARCH 2024; 257:121678. [PMID: 38692260 DOI: 10.1016/j.watres.2024.121678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The cost-effective treatment of sludge leachate (SL) with high nitrogen content and refractory dissolved organic matter (rDOM) has drawn increasing attention. This study employed, for the first time, a rDOM triggered denitratation-anammox continuous-flow process to treat landfill SL. Moreover, the mechanisms of exploiting rDOM from SL as an inner carbon source for denitratation were systematically analyzed. The results demonstrated outstanding nitrogen and rDOM removal performance without any external carbon source supplement. In this study, effluent concentrations of 4.27 ± 0.45 mgTIN/L and 5.58 ± 1.64 mgTN/L were achieved, coupled with an impressive COD removal rate of 65.17 % ± 1.71 %. The abundance of bacteria belonging to the Anaerolineaceae genus, which were identified as rDOM degradation bacteria, increased from 18.23 % to 35.62 %. As a result, various types of rDOM were utilized to different extents, with proteins being the most notable, except for lignins. Metagenomic analysis revealed a preference for directing electrons towards NO3--N reductase rather than NO2--N reductase, indicating the coupling of denitratation bacteria and anammox bacteria (Candidatus Brocadia). Overall, this study introduced a novel synergy platform for advanced nitrogen removal in treating SL using its inner carbon source. This approach is characterized by low energy consumption and operational costs, coupled with commendable efficiency.
Collapse
Affiliation(s)
- Ben Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yifeng Yang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, China.
| | - Zuobin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; National Engineering Research Center of Dredging Technology and Equipment, Shanghai, China
| | - Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Liang H, Jia Y, Khanal SK, Huang D, Sun L, Lu H. Electrochemical-coupled sulfur-driven autotrophic denitrification for nitrogen removal from raw landfill leachate: Evaluation of performance and mechanisms. WATER RESEARCH 2024; 256:121592. [PMID: 38626614 DOI: 10.1016/j.watres.2024.121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
The cost-effective and environment-friendly sulfur-driven autotrophic denitrification (SdAD) process has drawn significant attention for advanced nitrogen removal from low carbon-to-nitrogen (C/N) ratio wastewater in recent years. However, achieving efficient nitrogen removal and maintaining system stability of SdAD process in treating low C/N landfill leachate treatment have been a major challenge. In this study, a novel electrochemical-coupled sulfur-driven autotrophic denitrification (ESdAD) system was developed and compared with SdAD system through a long-term continuous study. Superior nitrogen removal performance (removal efficiency of 89.1 ± 2.5 %) was achieved in ESdAD system compared to SdAD process when treating raw landfill leachate (influent total nitrogen (TN) concentration of 241.7 ± 36.3 mg-N/L), and the effluent TN concentration of ESdAD bioreactor was as low as 24.8 ± 5.1 mg-N/L, which meets the discharge standard of China (< 40 mg N/L). Moreover, less sulfate production rate (1.3 ± 0.2 mg SO42--S/mgNOx--N vs 1.7 ± 0.2 mg SO42--S/mgNOx--N) and excellent pH modulation (pH of 6.9 ± 0.2 vs 5.8 ± 0.4) were also achieved in the ESdAD system compared to SdAD system. The improvement of ESdAD system performance was contributed to coexistence and interaction of heterotrophic bacteria (e.g., Rhodanobacter, Thermomonas, etc.), sulfur autotrophic bacteria (e.g., Thiobacillus, Sulfurimonas, Ignavibacterium etc.) and hydrogen autotrophic bacteria (e.g., Thauera, Comamonas, etc.) under current stimulation. In addition, microbial nitrogen metabolic activity, including functional enzyme (e.g., Nar and Nir) activities and electron transfer capacity of extracellular polymeric substances (EPS) and cytochrome c (Cyt-C), were also enhanced during current stimulation, which facilitated the nitrogen removal and maintained system stability. These findings suggested that ESdAD is an effective and eco-friendly process for advanced nitrogen removal for low C/N wastewater.
Collapse
Affiliation(s)
- Huiyu Liang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-Sen University, Shenzhen, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, USA
| | - Dongqi Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China.
| |
Collapse
|
4
|
Cheng L, Yang W, Liang H, Nabi M, Li Y, Wang H, Hu J, Chen T, Gao D. Nitrogen removal from mature landfill leachate through enhanced Partial Nitrification-Anammox process in an innovative multi-stage fixed biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162959. [PMID: 36948321 DOI: 10.1016/j.scitotenv.2023.162959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
In the current integrated PN/A method/process for mature landfill leachate treatment, microbial inhibition and low nitrogen removal capacity are the big barriers due to high ammonia concentration and low C/N. This study aimed to evaluate the performance of a high-rate nitrogen removal lab-scale reactor, which combines pre-denitrification and Partial Nitrification-Anammox (PN/A) in a multi-stage fixed biofilm reactor (MFBR), for mature landfill leachate treatment. A nitrogen removal efficiency (NRE) of 90.43 % and an average nitrogen removal rate (NRR) of 0.94 kg/m3·d were observed at an influent NH+ 4-N concentration of 2274.39 mg/L during the last operational phase. The nitrogen mass balance showed that the nitrogen concentration gradually decreases along the course, and nitrogen was mainly removed in the aerobic chambers, in which Anammox contributed to 86.4 % of the removed nitrogen, while the front anoxic chamber is mainly used to remove NO- 3-N from the recirculation. Redundancy analysis showed that the variation in NH+ 4-N concentration along the course was the main factor affecting microbial community succession, which shows that the reactor configuration enables efficient cooperation and distribution of different microorganisms. Moreover, economic analysis of MFBR process showed that the energy consumption and carbon addition were reduced by 58.9 % and 100 %, respectively. Therefore, the MFBR established in this study, with its new configuration, achieves efficient treatment of landfill leachate in a single reactor and is environmentally friendly, and could be considered as a reference for full-scale landfill leachate treatment.
Collapse
Affiliation(s)
- Lang Cheng
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wenbo Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Mohammad Nabi
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yuqi Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huan Wang
- Shanghai SUS Environmental Remediation Co., LTD, Shanghai 201703, China
| | - Jiachen Hu
- Shanghai SUS Environmental Remediation Co., LTD, Shanghai 201703, China
| | - Tao Chen
- Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
5
|
Cho K, Lee S, Jung J, Choi D. Elucidating prioritized factor for mainstream partial nitritation between C/N ratio and dissolved oxygen: Response surface methodology and microbial community shifts. ENVIRONMENTAL RESEARCH 2023; 227:115748. [PMID: 36972772 DOI: 10.1016/j.envres.2023.115748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
Recently, C/N ratio is suggested as a promising control factor with dissolved oxygen (DO) achieving mainstream partial nitritation (PN); however, their combined effects on mainstream PN are still limited. This study evaluated the mainstream PN with respect to the combined factors, and investigated the prioritized factor affecting the community of aerobic functional microbes competing with NOB. Response surface methodology was performed to assess the combined effects of C/N ratio and DO on the activity of functional microbes. Aerobic heterotrophic bacteria (AHB) played the greatest role in oxygen competition among functional microbes, which resulted in relative inhibition of nitrite-oxidizing bacteria (NOB). The combination of high C/N ratio and low DO had a positive role in the relative inhibition of NOB. In bioreactor operation, the PN was successfully achieved at ≥ 1.5 of C/N ratio for 0.5-2.0 mg/L DO conditions. Interestingly, aerobic functional microbes outcompeting NOB were shifted with C/N ratio rather than DO, suggesting C/N ratio is more prioritized factor achieving mainstream PN. These findings will provide insights into how combined aerobic conditions contribute to achieve mainstream PN.
Collapse
Affiliation(s)
- Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, South Korea; Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Sangji Lee
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Jinyoung Jung
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Daehee Choi
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
6
|
Choi D, Jung J. Nitrogen removal enhancement through competitive inhibition of nitrite oxidizing bacteria in mainstream partial nitritation/anammox: Anammox seeding and influent C/N ratios. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Jia C, Wu L, Yu K, Hu J, Qi JW, Luo A. Achieving stable anammox process and revealing shift of bacteria during the start-up in landfill leachate treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10841. [PMID: 36789674 DOI: 10.1002/wer.10841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Partial nitrification-anammox (PN/A) is an energy-efficient technology for nitrogen removal in landfill leachate treatment. Numerous studies have reported successful implementation of the PN/A process and its stable operation under laboratory conditions. One of the primary challenges in PN/A engineering applications is the mass of the seed sludge required for start-up. This study examined the PN/A using a sequence batch reactor (SBR) inoculating a common mixture to treat landfill leachate. After 70 days of operation, the system successfully realized a one-stage PN/A process and maintained a stable ammonium NH 4 + $$ \left({NH}_4^{+}\right) $$ removal efficiency of 97.65% ± 1%, where the effluent of NH 4 + $$ {NH}_4^{+} $$ and nitrate ( NO 3 - $$ {NO}_3^{-} $$ ) were less than 4 ± 1.5 mg L-1 and 10 mg L-1 . In addition, the relative abundances of Ca. Kuenenia and Ca. Brocadia, which are typical anaerobic ammonia-oxidizing bacteria (AnAOB), increased from 0.08% to 3.99% (70 days) and 0.01% to 0.45%, respectively. The relative abundances of ammonia-oxidizing bacteria (AOB) Nitrosomonas and Nitrosospira increased from 0.9% to 2.89% and 0.007% to 0.1% (70 days), respectively. Both AnAOB and AOB are important niches of the system. PRACTITIONER POINTS: The research realized PN/A rapidly by inoculating common mixture sludge. The experiment successfully enriched AnAOB from 0.09% to 3.89% within 70 days. The article revealing the ecological roles of AOB and AnAOB in the landfill leachate treatment.
Collapse
Affiliation(s)
- Chunfang Jia
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Lina Wu
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Jincheng Hu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Jiabao Wendy Qi
- Department of Civil and Environmental engineering, University of Auckland, Auckland, New Zealand
| | - Anteng Luo
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, China
| |
Collapse
|
8
|
Liu H, Liu D, Huang Z, Chen Y. Bioaugmentation reconstructed nitrogen metabolism in full-scale simultaneous partial nitrification-denitrification, anammox and sulfur-dependent nitrite/nitrate reduction (SPAS). BIORESOURCE TECHNOLOGY 2023; 367:128233. [PMID: 36332873 DOI: 10.1016/j.biortech.2022.128233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
To enhance nitrogen removal of fermentation pharmaceutical wastewater with high nitrogen load, a full-scale process based on simultaneous partial nitrification-denitrification/ anammox/ sulfur autotrophic denitrification (SPAS) was established via inoculating with bioaugmentation consortia in a modified two-stage AO. More than 93 % TN and 98 % NH4+-N removal were obtained at a rate of 0.8 kg-N/ m3/d in the first A/O stage, in which short-cut SND was involved with 96.05 % ESND when bioaugmented with SND, while S0-SAD could coordinate with anammox to exert further deep denitrification in the second A/O stage. KEGG analysis demonstrated that the SPAS process was synergism of HD, PN/PDN, SND, SAD and anammox metabolism, bioaugmentation could significantly up-regulate genes related to microbial metabolism (TCA cycle, Carbon metabolism, ABC transporters) and environmental adaptation (Two-component system, Quorum sensing) based on the FAPROTAX and Picrust2 functional prediction. This study provided a new perspective in engineering applications.
Collapse
Affiliation(s)
- Huimin Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Dejin Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Zhenyu Huang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
9
|
Zhang L, Hao S, Dou Q, Dong T, Qi WK, Huang X, Peng Y, Yang J. Multi-Omics Analysis Reveals the Nitrogen Removal Mechanism Induced by Electron Flow during the Start-up of the Anammox-Centered Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16115-16124. [PMID: 36215419 DOI: 10.1021/acs.est.2c02181] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Significant progress in understanding the key enzymes or species of anammox has been made; however, the nitrogen removal mechanism in complex coupling systems centered on anammox remains limited. In this study, by the combination of metagenomics-metatranscriptomics analyses, the nitrogen removal in the anammox-centered coupling system that entails partial denitrification (PD) and hydrolytic acidification (HA, A-PDHA) was elucidated to be the nitrogen transformation driven by the electron generation-transport-consumption process. The results showed that a total nitrogen (TN) removal efficiency of >98%, with a TN effluence of <1 mg/L and a TN removal contribution via anammox of >98%, was achieved after 59 days under famine operation and alkaline conditions during the start-up process. Further investigation confirmed that famine operation promoted the activity of genes responsible for electron generation in anammox, and increased the abundance or expression of genes related to electron consumption. Alkaline conditions enhanced the electron generation for PD by upregulating the activity of glyceraldehyde 3-phosphate dehydrogenase and strengthened electron transfer by increasing the gene encoding quinone pool. Altogether, these variations in the electron flow led to efficient nitrogen removal. These results improve our understanding of the nitrogen removal mechanism and application of the anammox-centered coupling systems in treating nitrogen wastewater.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Tingjun Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Wei Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Xiaowu Huang
- Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong515063, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Jiachun Yang
- Shuifa Shandong Water Development Group Co. Ltd.Shandong274200, China
| |
Collapse
|
10
|
Wang Z, Sun C, Zhou Y, Yu Q, Xu X, Zhao Z, Zhang Y. Anaerobic ammonium oxidation driven by dissimilatory iron reduction in autotrophic Anammox consortia. BIORESOURCE TECHNOLOGY 2022; 364:128077. [PMID: 36216281 DOI: 10.1016/j.biortech.2022.128077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Feammox has been applied to wastewater biological nitrogen removal. However, few studies have reported that Fe(III)(hydr)oxides induced Anammox consortia to remove NH4+ via the Feammox pathway. In this study, Fe(OH)3 was added to Anammox systems to investigate its effect on nitrogen removal via Feammox. The specific Anammox activity increased by 39 % by Fe(OH)3. Ammonia oxidation was observed to occur along with Fe(III) reduction and Fe(II) generation, which was further confirmed by the isotope test with feeding 15NH4+-N to detect 30N2. The cyclic voltammetry test showed that electron-storage capacity of Anammox sludge increased with Fe(OH)3. In situ Fourier transform infrared spectroscopy suggested that Fe(OH)3 enhanced the polarization of functional groups of outer membrane cytochrome of Anammox consortia to benefit extracellular electron transfer. This study demonstrated that Fe(OH)3 could induce Anammox consortia to perform extracellular respiration to enhance NH4+-N removal in the Anammox sludge system.
Collapse
Affiliation(s)
- Zhenxin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Cheng Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yue Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
11
|
Lin W, Liu H, Zhang Y, Chen Y, Qin Y. Fe(Ⅱ) improving sulfurized Anammox coupled with autotrophic denitrification performance: Based on interspecies and intracellular electron transfer. BIORESOURCE TECHNOLOGY 2022; 364:128051. [PMID: 36191753 DOI: 10.1016/j.biortech.2022.128051] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Insufficient nitrite supply and slow metabolism of Anammox bacteria (AnAOB) impeded the application of Anammox process in low level ammonia (LLA) (≤50 mg/L) wastewater. At the initial concentration of 50 mg/L NH4+-N and 75 mg/L NO3--N, Fe(Ⅱ) (10 mg/L) promoted the total nitrogen removal efficiency from 80.79 to 94.92 % by core-shell sulfurized AnAOB coupled with sulfur oxidizing bacteria (S0@AnAOB + SOB). AnAOB outcompeted SOB for nitrite, because the addition of Fe(Ⅱ) not only increased the nitrate reductase activity (37.54 %), but also enhanced the metabolism and electron capture ability of AnAOB, which was highly related with energy metabolic process: hydrazine dehydrogenase activity increased to 139.00 %. Particularly, Fe(Ⅱ) accelerated the interspecies electron transfer (INET) (from SOB to AnAOB) by stimulating the secretion of redox species and electron hopping in EPS. This study shed light on the mechanism of Fe(Ⅱ) promoting electron transfer in S0@AnAOB + SOB system, and provided basis for engineering practice.
Collapse
Affiliation(s)
- Wenmin Lin
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Huimin Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Yujie Zhang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Yuancai Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China.
| | - Yexia Qin
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
12
|
Yan Z, Li A, Shim H, Wang D, Cheng S, Wang Y, Li M. Effect of ozone pretreatment on biogranulation with partial nitritation - Anammox two stages for nitrogen removal from mature landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115470. [PMID: 35751269 DOI: 10.1016/j.jenvman.2022.115470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Due to the extremely low C/N ratio, high concentration of ammonia nitrogen and refractory organic matter of mature landfill leachate (MLL), appropriate processes should be selected to effectively remove nitrogen and reduce disposal costs. Partial nitritation (PN) and anaerobic ammonia oxidation (AMX) have been used as the main nitrogen removal processes for MLL, and the sludge granulation in PN and AMX processes could contribute to high biological activity, good sedimentation performance, and stable resistance to toxicity. In this study, the O3-PN-AMX biogranules process was selected to effectively remove nitrogen from MLL without carbon addition and pH adjustment. Without uneconomical NH4+-N oxidation and wasting the alkalinity of MLL, ozone pretreatment achieved color removal, decreased humic- and fulvic-like acid substances, and alleviated the MLL toxicity on ammonia oxidizers. In addition, the ozonation of MLL could shorten the start-up time and improve the treatment efficiency and biogranules stability of PN and AMX processes. Efficient and stable nitritation was achieved in PN reactor without strict dissolved oxygen (DO) control, which was attributed to the unique structure of granular sludge, ozone pretreatment, and alternating inhibition of free ammonia and free nitric acid on nitrite oxidizers. Through the application of ozone pretreatment and granular sludge, the nitrogen removal rate (NRR) and nitrogen removal efficiency (NRE) of the O3-PN-AMX biogranules process reached 0.39 kg/m3/day and 85%, respectively, for the undiluted MLL treatment. This study might provide a novel and effective operation strategy of combined process for the efficient, economical, and stable nitrogen removal from MLL.
Collapse
Affiliation(s)
- Zhenyu Yan
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, 999078, China
| | - Danyang Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shuqian Cheng
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yuexing Wang
- Shenzhen Shenshui Ecological & Environmental Technology Co., Ltd., Shenzhen, 518048, China
| | - Ming Li
- Engelbart (Beijing) Eco-Tech Co., Ltd., Beijing, 101300, China
| |
Collapse
|
13
|
Xu A, Yu D, Qiu Y, Chen G, Tian Y, Wang Y. A novel process of salt tolerance partial denitrification and anammox (ST-PDA) for treating saline wastewater. BIORESOURCE TECHNOLOGY 2022; 345:126472. [PMID: 34864184 DOI: 10.1016/j.biortech.2021.126472] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 05/12/2023]
Abstract
In the study, the salt-tolerant partial denitrification and Anammox (ST-PDA) process was established, meanwhile, the feasibility of salinity inhibition model as the boundary control method and the subsequent operation performance were studied. Study indicated that the performance of salt-tolerant PD sludge was the optimum under the 10 g·L-1 salinity, and AnAOB also maintained high activity at the salinity. Haldane and Aiba models verified that NO3--N (substrate) and FNA (product) would have negative consequences for performance of ST-PDA system. However, the effect of FNA would be eliminated by self-alkalization in the denitrification process. A 90% nitrogen removal rate was achieved and the average effluent total nitrogen of 17.8 mg·L-1 was maintained in the system. The high throughput sequencing revealed that the species richness decreased with the salinity increased, while Thauera played a major role in nitrogen removal in saline environment. The study provides a novel insights for salt-containing industrial wastewater.
Collapse
Affiliation(s)
- Ao Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yanling Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Yuan Tian
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yanyan Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
14
|
Nitrogen Removal from Mature Landfill Leachate via Anammox Based Processes: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14020995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mature landfill leachate is a complex and highly polluted effluent with a large amount of ammonia nitrogen, toxic components and low biodegradability. Its COD/N and BOD5/COD ratios are low, which is not suitable for traditional nitrification and denitrification processes. Anaerobic ammonia oxidation (anammox) is an innovative biological denitrification process, relying on anammox bacteria to form stable biofilms or granules. It has been extensively used in nitrogen removal of mature landfill leachate due to its high efficiency, low cost and sludge yield. This paper reviewed recent advances of anammox based processes for mature landfill leachate treatment. The state of the art anammox process for mature landfill leachate is systematically described, mainly including partial nitrification–anammox, partial nitrification–anammox coupled denitrification. At the same time, the microbiological analysis of the process operation was given. Anaerobic ammonium oxidation (anammox) has the merit of saving the carbon source and aeration energy, while its practical application is mainly limited by an unstable influent condition, operational control and seasonal temperature variation. To improve process efficiency, it is suggested to develop some novel denitrification processes coupled with anammox to reduce the inhibition of anammox bacteria by mature landfill leachate, and to find cheap new carbon sources (methane, waste fruits) to improve the biological denitrification efficiency of the anammox system.
Collapse
|
15
|
Li Y, Liu Y, Luo J, Li YY, Liu J. Emerging onsite electron donors for advanced nitrogen removal from anammox effluent of leachate treatment: A review and future applications. BIORESOURCE TECHNOLOGY 2021; 341:125905. [PMID: 34523566 DOI: 10.1016/j.biortech.2021.125905] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Partial nitrification-anammox process is promising in leachate treatment, but the 11% residue nitrate limits the total nitrogen removal efficiency. Denitrification or partial denitrification and anammox are both practical polishing processes of anammox effluent, requiring extra electron donors. Fortunately, there are organic matter, sulfide and methane in leachate or produced by leachate treatment, which can serve as onsite electron donors. In this review, the mechanisms and processes using these three kinds of electron donors for residue nitrate reduction in anammox effluent of leachate are systematically summarized and discussed. It can be concluded that, biodegradable organic matter is an effective electron donor, sulfide is a promising electron donor, methane is a potential electron donor. Two possible applications in future based on anammox treatment of fresh and mature leachate using sulfide and methane as onsite electron donors are proposed. Through sulfide reutilization, energy-saving with about 14% of aeration reduction can be achieved.
Collapse
Affiliation(s)
- Yanyan Li
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yanxu Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jinghuan Luo
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|