1
|
Zhai Q, Li J, Miao K, Song Y, Yang S, Zhao S, Lu Y, Hu J. Atmospheric one-pot fractionation and catalytic conversion of lignocellulose in multifunctional deep eutectic solvent system. Int J Biol Macromol 2025; 290:138736. [PMID: 39675620 DOI: 10.1016/j.ijbiomac.2024.138736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
This study developed a "one-pot" three-stage process using a "multifunctional" deep eutectic solvent (DES) containing choline chloride (ChCl), ethylene glycol (EG), and protonic acids for the production of phenolic monomers, furfural, and glucose. In the first stage, the DES effectively dissolved over 70 % of lignin and 78 % of hemicellulose while preserving aryl ether bonds in lignin due to the grafting of EG onto the aryl ether bonds. Concurrently, the retention of a near-quantitative amount of cellulose led to a glucose yield of >80 % after enzymatic saccharification. In the next stage, the DES enabled the catalytic depolymerization of lignin using a Ru/C catalyst at mild temperatures and atmospheric pressure, eliminating the need for an external hydrogen source and yielding G/S-propyl and G/S-propenyl monomers at 13.8 %. Additionally, the ratio of ChCl to EG in the DES could regulate the composition and selectivity of the phenolic monomers. Following this, the hemicellulose sugars dissolved in the DES underwent catalytic hydrolysis in a DES/water system, achieving a furfural yield of 36.4 % under optimized conditions. The results of this study offer important insights into the valorization of lignocellulose in "one-pot" under mild conditions, thereby advancing the field of biorefining.
Collapse
Affiliation(s)
- Qiaolong Zhai
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jie Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Kangze Miao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yunhao Song
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaoqi Yang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Shuheng Zhao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanju Lu
- College of Chemical Engineering, Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, International Innovation Highland of Forest Products Chemistry and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianjun Hu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
2
|
Noor Armylisas AH, Hoong SS, Tuan Ismail TNM, Chan CH. Efficient biodiesel production by sulfonated carbon catalyst derived from waste glycerine pitch via single-step carbonisation and sulfonation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:34-43. [PMID: 39173470 DOI: 10.1016/j.wasman.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Glycerine pitch is a highly alkaline residue from the oleochemical industry that contains glycerol and contaminants, such as water, soap, salt and ash. In this study, acidic heterogeneous glycerol-based carbon catalysts were synthesised for biodiesel production via single-step partial carbonisation and sulfonation using pure glycerol and glycerine pitch, producing products labelled as SGC and SGPC, respectively. Carbon materials were obtained by heating glycerol and concentrated sulfuric acid (1:3) at 200℃ for 1 h. The produced SGC and SGPC displayed high densities of sulfonic group (-SO3H), i.e. 1.49 and 1.00 mmol·g-1, respectively, alongside carboxylic (-COOH) and phenolic (-OH) acid. In the catalytic evaluation, excellent oleic acid conversions of 96.0 ± 0.4 % and 92.4 ± 0.5 % were achieved using SGC and SGPC, respectively, under optimised reaction conditions: 1:10 M ratio of oleic acid to methanol, 5 % (w/w) catalyst, 64℃ and 5 h. SGPC was found to be recyclable with 68.5 % conversion after the 6th cycle, which was attributed to the loss of -SO3H and catalyst deactivation by the deposition of oleic acid on its surface. Remarkably, despite the impurities present in the glycerine pitch, the obtained results demonstrated that the reactivity of SGPC is comparable to SGC and superior to that of commercial solid acid catalysts, which demonstrated that the presence of impurities appears to have minimal impact on the production of carbon materials and their properties.
Collapse
Affiliation(s)
- A H Noor Armylisas
- Synthesis & Product Development (SPD) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| | - S S Hoong
- Synthesis & Product Development (SPD) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| | - T N M Tuan Ismail
- Synthesis & Product Development (SPD) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| | - C H Chan
- Process Engineering and Design (PED) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
3
|
Li Q, Lu S, Wu X, Wang L, Wang Z, Zhao L. Application of hydrophobic eutectic solvent in efficient biotransformation of total flavonoids of Herba Epimedii. J Biotechnol 2024; 391:106-116. [PMID: 38871028 DOI: 10.1016/j.jbiotec.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Icaritin, a hydrolysate from total flavonoids of Epimedii (TFE), which has better anti-hepatoma activity than its glycosylated form. In this work, immobilized enzymes 4LP-Tpebgl3@Na-Y and DtRha@ES-107 were used to hydrolyze TFE to prepare icaritin. Five different hydrophobic deep eutectic solvents (HDES) were prepared and the most ideal HDES was successfully selected, which was composed of dodecyl alcohol and thymol with the molar ratio of 2:1. The relative enzyme activity of 4LP-Tpebgl3@Na-Y and DtRha@ES-107 was about 102.4 % and 112.5 %, respectively. In addition, the thermal and binding stability of 4LP-Tpebgl3@Na-Y and DtRha@ES-107 in HDES was not affected negatively. In the biphasic system composed of 50 % (v/v) HDES and Na2HPO4-citric acid buffer (50 mM, pH 5.5), 4LP-Tpebgl3@Na-Y (1.0 U/mL) and TFE (1 g/L) were reacted at 80 °C for 1 h, and then reacted with DtRha@ES-107 (20 U/mL) at 80 °C for 2 h. Finally, TFE was completely converted to 301.8 mg/L icaritin (0.82 mM). After 10 cycles, 4LP-Tpebgl3@Na-Y/DtRha@ES-107 still maintained 84.1 % original activity. In this study, we developed an efficient methodology for icaritin preparation through the integration of enzymatic catalysis and adsorption separation, presenting a viable approach for large-scale, cost-effective production of icaritin.
Collapse
Affiliation(s)
- Qi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Shan Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Xianyao Wu
- Jinling High School Hexi Campus International Department, Nanjing 210019, China
| | - Lei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., 58 Haichang South Road, Lianyungang 222001, China.
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China.
| |
Collapse
|
4
|
Yang Q, Fan B, He YC. Combination of solid acid and solvent pretreatment for co-production of furfural, xylooligosaccharide and reducing sugars from Phyllostachys edulis. BIORESOURCE TECHNOLOGY 2024; 395:130398. [PMID: 38286168 DOI: 10.1016/j.biortech.2024.130398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
The efficient utilization of biomass resources has gained widespread attention in current research. This study focused on the conversion of hemicellulose into xylo-oligosaccharides and furfural, as well as enhanced cellulose saccharification and lignin removal from residual biomass. The solid acid catalyst AT-Sn-MMT was prepared by sulfonation and tin ion loading of montmorillonite K-10. In a mixture of deep eutectic solvent and γ-valerolactone (3:7, v/v), AT-Sn-MMT was used to catalyze Phyllostachys edulis (PE) at 160 °C for 20 min, obtaining a furfural yield of 85.7 % and 1.5 g/L xylo-oligosaccharides. The delignification of pretreated PE was 59.5 %, reaching an accessibility of 221.3 g dye/g material. While the enzymatic saccharification efficiency was increased to 73.1 %. This work drew on the merits of solid acid catalysts and mixed solvent systems, and this constructed pretreatment method could be efficiently applied for co-production of reducing sugars, xylooligosaccharide and furfural, realizing the efficient valorization of PE.
Collapse
Affiliation(s)
- Qizhen Yang
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Bo Fan
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
5
|
Li Y, Pan L, He YC. Co-production of 2,5-dihydroxymethylfuran and furfuralcohol from sugarcane bagasse via chemobiocatalytic approach in a sustainable system. BIORESOURCE TECHNOLOGY 2023; 389:129819. [PMID: 37797802 DOI: 10.1016/j.biortech.2023.129819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
2,5-Dihydroxymethylfuran and furfuryl alcohol serve as versatile building-blocks in pharmaceuticals, polymers, and value-added intermediates. To develop an efficient and sustainable method for their production from biomass, a combined approach using deep eutectic solvent Citric acid:Betaine (CTA:BT) for bagasse catalysis and recombinant E. coli SCFD23 for bioreduction of bagasse-derived 5-hydroxymethylfurfural and furfural was devised. Bagasse was effectively transformed into 5-hydroxymethylfurfural (48 mM) and furfural (14 mM) in CTA:BT (8 wt%)-water at 170 °C for 30 min. Bioreduction of 5-hydroxymethylfurfural and furfural by SCFD23 cell co-expressing formate dehydrogenase and NAD(P)H-dependent aldehyde reductase (SsCR) yielded 2,5-dihydroxymethylfuran (90.0 % yield) and furfuryl alcohol (99.0 % yield) in 6 h, using biomass-derived formic acid, xylose and glucose as co-substrates. Molecular docking confirmed the stable binding and reductase activity of SsCR with the biomass-derived 5-hydroxymethylfurfural and furfural. An efficient and eco-friendly chemobiological approach was applied for co-production of 2,5-dihydroxymethylfuran and furfuryl alcohol from biomass in one-pot two-step reaction.
Collapse
Affiliation(s)
- Yucheng Li
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Lei Pan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
6
|
Tang Z, Yang D, Tang W, Ma C, He YC. Combined sulfuric acid and choline chloride/glycerol pretreatment for efficiently enhancing enzymatic saccharification of reed stalk. BIORESOURCE TECHNOLOGY 2023; 387:129554. [PMID: 37499922 DOI: 10.1016/j.biortech.2023.129554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
In this study, an efficient combination of pretreatment solvents involving Choline chloride/Glycerol (ChCl/Gly) and H2SO4 was firstly developed to assess the pretreatment performance and determine optimal pretreatment conditions. The results illustrated that the H2SO4-[ChCl/Gly] combination efficiently removed lignin (52.6%) and xylan (80.5%) from the pretreated reed stalk, and subsequent enzymatic hydrolysis yielded 91.1% of glucose. Furthermore, several characterizations were conducted to examine the structural and morphological changes of the reed stalk, revealing apparently enhanced accessibility (128.4 to 522.6 mg/g), reduced lignin surface area (357.9 to 229.5 m2/g), and substantial changes on biomass surface. Based on the aforementioned study, possible mechanisms for the H2SO4-[ChCl/Gly] pretreatment of reed stalks were proposed. The comprehensive understanding of combined H2SO4-[ChCl/Gly] pretreatment system for enhancing the saccharification of the reed stalk was interpreted in this work. Overall, this novel approach could be efficiently applied to pretreat and saccharify reed stalks, empowering the biomass refining industry.
Collapse
Affiliation(s)
- Zhengyu Tang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Dong Yang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, PR China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
7
|
Yang Q, Tang W, Ma C, He YC. Efficient co-production of xylooligosaccharides, furfural and reducing sugars from yellow bamboo via the pretreatment with biochar-based catalyst. BIORESOURCE TECHNOLOGY 2023; 387:129637. [PMID: 37549711 DOI: 10.1016/j.biortech.2023.129637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The research on the efficient use of biomass to produce chemical products has received extensive attention. In this work, a novel heterogeneous biocarbon-based heterogeneous catalyst AT-Sn-YB was prepared using yellow bamboo (YB) as a carrier, and its physical properties were proved to be good by various characterization and stability experiments. In the γ-valerolactone/water (3:1, v/v) medium containing 100 mM CuCl2, the use of AT-Sn-YB (3.6 wt%) under 170 °C for 20 min was applied to catalyze YB into furfural (80.3% yield), accompanied with 2.8 g/L xylooligosaccharides. The YB solid residue obtained from treatment was efficiently saccharified to reducing sugars (17.2 g/L). Accordingly, comprehensive understanding of efficiently co-producing xylooligosaccharides, furfural and reducing sugars from YB was demonstrated via the pretreatment with biochar-based catalyst. This study innovatively used a new type of solid acid to complete the efficient co-production of chemical products, and realized the value-added utilization of yellow bamboo.
Collapse
Affiliation(s)
- Qizhen Yang
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
8
|
Liu Y, Li L, Ma C, He YC. Chemobiocatalytic transfromation of biomass into furfurylamine with mixed amine donor in an eco-friendly medium. BIORESOURCE TECHNOLOGY 2023; 387:129638. [PMID: 37549717 DOI: 10.1016/j.biortech.2023.129638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Biobased furfurylamine (FAM) is a versatile platform molecule for producing additives, pharmaceuticals, and pesticides. Recombinant E. coli HNND-AlaDH was created by co-expressing L-alanine dehydrogenase (AlaDH) and mutated Aspergillus terreus ω-transaminase (HNND), aiming to convert furfural (FUR) into FAM using inexpensive L-alanine and isopropylamine as mixed amine donors. In ChCl:FA:OA (10 wt%), pineapple peel, bagasse, barley shell, peanut shell, and corn stalk could be efficiently transformed into FUR under 170 °C for 10 min. Pineapple peel produced a high titer of FUR (183.3 mM). Additionally, the viscosity, surface tension and polarity of ChCl:FA:OA were explored. The biomass-derived FUR was fully transformed to FAM by HNND-AlaDH with amine donor (1:1:1 of L-Ala/isopropylamine/FUR mol/mol/mol) within 300 min. Accordingly, the FAM productivity was 0.58 g/(g xylan in pineapple peel). This chemobiocatalytic strategy established through the combination of chemocatalysis and biocatalysis could be applied to convert renewable biomass into valuable organic amines.
Collapse
Affiliation(s)
- Yuting Liu
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Lei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
9
|
Zhu L, Di J, Li Q, He YC, Ma C. Enhanced conversion of corncob into furfurylamine via chemoenzymatic cascade catalysis in a toluene–water medium. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
10
|
Stepacheva AA, Markova ME, Lugovoy YV, Kosivtsov YY, Matveeva VG, Sulman MG. Plant-Biomass-Derived Carbon Materials as Catalyst Support, A Brief Review. Catalysts 2023. [DOI: 10.3390/catal13040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Carbon materials are widely used in catalysis as effective catalyst supports. Carbon supports can be produced from coal, organic precursors, biomass, and polymer wastes. Biomass is one of the promising sources used to produce carbon-based materials with a high surface area and a hierarchical structure. In this review, we briefly discuss the methods of biomass-derived carbon supported catalyst preparation and their application in biodiesel production, organic synthesis reactions, and electrocatalysis.
Collapse
|
11
|
Tang Z, Li Q, Di J, Ma C, He YC. An efficient chemoenzymatic cascade strategy for transforming biomass into furfurylamine with lobster shell-based chemocatalyst and mutated ω-transaminase biocatalyst in methyl isobutyl ketone-water. BIORESOURCE TECHNOLOGY 2023; 369:128424. [PMID: 36464000 DOI: 10.1016/j.biortech.2022.128424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
To date, an efficient process for manufacturing valuable furan compounds from available renewable resources has gained great attention via a chemoenzymatic route. In this study, a sulfonated tin-loaded heterogeneous catalyst CLUST-Sn-LS using lobster shell as biobased carrier was prepared to convert corncob (75.0 g/L) into furfural (122.5 mM) at 170 °C for 30 min in methyl isobutyl ketone (MIBK)-H2O biphasic system (2:1, v/v). To improve furfurylamine yield, a novel recombinant E. coli TFTS harboring robust mutant Aspergillus terreus ω-transaminase [hydrophilic threonine (T) at position 130 was site-directed mutated to hydrophobic phenylalanine (F)] was constructed to transform 300-500 mM furfural into furfurylamine (90.1-93.6 % yield) at 30 °C and pH 7.5 in MIBK-H2O. Corncob was converted to furfurylamine in MIBK-H2O with a high productivity of 0.461 g furfurylamine/(g xylan). This constructed chemoenzymatic method coupling bio-based chemocatalyst CLUST-Sn-LS and mutant ω-transaminase biocatalyst in a biphasic system could efficiently convert lignocellulose into furfurylamine.
Collapse
Affiliation(s)
- Zhengyu Tang
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Qing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China
| | - Junhua Di
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Cuiluan Ma
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
12
|
Di J, Li Q, Ma C, He YC. An efficient and sustainable furfurylamine production from biomass-derived furfural by a robust mutant ω-transaminase biocatalyst. BIORESOURCE TECHNOLOGY 2023; 369:128425. [PMID: 36470494 DOI: 10.1016/j.biortech.2022.128425] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Furfurylamine is a key furan-based compound for manufacturing perfumes, fibers, additives, medicines and agrochemicals. It can be obtained by amination of furfural by ω-transaminase (AtAT) from Aspergillus terreus. In this work, site-directed mutant of amino acid residues [Threonine (T) at AT130 was mutated to Methionine (M) and Glutamic acid (E) at AT133 was mutated to Phenylalanine (F)] was used to change in the flexible region of AtAT. The transamination activity and thermostability were significantly improved. In ChCl:MA (30 wt%), furfural (500 mM) was efficiently transformed into furfurylamine (92% yield) with TMEF after 12 h. 101.3 mM of biomass-derived furfural and 129.7 mM of D-xylose-derived furfural were wholly converted into furfurylamine within 5 h, achieving the productivity of 0.465 g furfurylamine/(g xylan in corncob) and 0.302 g furfurylamine/(g D-xylose). This established chemoenzymatic conversion strategy by bridging chemocatalysis and biocatalysis could be utilized in the valorisation of renewable biomass to valuable furans.
Collapse
Affiliation(s)
- Junhua Di
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Qing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
13
|
Chen D, Tang W, Wang H, Sheng Y, Tan X, Shi Y, Fan W, Ge S. Phosphoric acid pretreatment of poplar to optimize fermentable sugars production based on orthogonal experimental design. Front Chem 2023; 11:1119215. [PMID: 36909714 PMCID: PMC9993246 DOI: 10.3389/fchem.2023.1119215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 02/24/2023] Open
Abstract
The recalcitrant structure of raw poplar limited the production of fermentable sugars when applied as the material in the pretreatment of biochemical conversions. Phosphoric acid pretreatment is an efficient method to destroy the compact lignocellulose matrix presence in the poplar. In this study, phosphoric acid pretreatment of poplar was optimised by an orthogonal experimental design [L9(33)] to improve enzymatic digestibility through investigating the effects of reaction temperature, time duration, and phosphoric acid concentration. The optimal conditions were selected based on the variance of chemical compositions, hemicellulose removal ratio, and delignification of the woody material after pretreatment. The optimum enzymatic hydrolysis yield of up to 73.44% was obtained when the phosphoric acid pretreatment performed at 190°C for 150 min under 1.5% of v/v phosphoric acid concentration.
Collapse
Affiliation(s)
- Deming Chen
- Ministry of Forestry Bioethanol Research Center, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Wenjing Tang
- Ministry of Forestry Bioethanol Research Center, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Hui Wang
- Ministry of Forestry Bioethanol Research Center, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yequan Sheng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, China
| | - Xin Tan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, China
| | - Yang Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Wei Fan
- Key Laboratory of Functional Textile Material and Product of Ministry of Education, School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shanxi, China
| | - Shengbo Ge
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Haldar D, Dey P, Thomas J, Singhania RR, Patel AK. One pot bioprocessing in lignocellulosic biorefinery: A review. BIORESOURCE TECHNOLOGY 2022; 365:128180. [PMID: 36283673 DOI: 10.1016/j.biortech.2022.128180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Practically, high-yield conversion of biomass into value-added products at low cost is a primary goal for any lignocellulosic refinery. In the industrial context, the limitation in the practical adaptation of the conventional techniques practically involves multiple reactors for the conversion of biomass to bioproducts. Therefore, the present manuscript critically reviewed the advancements in one-pot reaction systems with a major focus on the scientific production of value-added products from lignocellulosic biomass. In view of that, the novelty of one-pot reactions is shown during the fractionation of biomass into their individual constituents. The importance of the direct conversion of cellulose and lignin into a range of valuable products including organic acids and platform chemicals are separately discussed. Finally, the article is concluded with the opportunities, existing troubles, and possible solutions to overcome the challenges in lignocellulosic biorefinery. This article will assist the readers to identify the economic-friendly-one-pot conversion of lignocellulosic biomass.
Collapse
Affiliation(s)
- Dibyajyoti Haldar
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
| | - Pinaki Dey
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Jibu Thomas
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226029, India
| | - Anil Kumar Patel
- Centre for Energy and Environmental Sustainability, Lucknow 226029, India; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
15
|
Amesho KTT, Cheng PC, Chang KL, Peng YP, Jhang SR, Lin YC. Microwave-assisted deep eutectic solvents/dimethyl sulfoxide system for efficient valorization of sugar bagasse waste into platform chemicals: A biorefinery approach for circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 363:127969. [PMID: 36122844 DOI: 10.1016/j.biortech.2022.127969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
The exploitation of lignocellulosic biomass (LB) such as sugar bagasse waste in biorefineries is the most cost-effective and favourable sustainable approach to producing essential platform chemicals, materials, and energy environmentally benignly. Herein, a microwave-mediated deep eutectic solvents (DESs)/dimethyl sulfoxide (DMSO) system for efficiently processing LB waste into platform chemicals was proposed thereof. Under optimized appropriate diverse parameters such as solvent varieties, catalyst dosage, DMSO addition, reaction time and temperature, the proposed catalytic system (i.e., microwave mediated DESs/DMSO system) has demonstrated significant yields of 5-hydroxymethylfurfural (5-HMF), furfural (FF) and levulinic acid (LevA) of 31.29 %, 28.38 % and 35.65 %, respectively. These favourable results were obtained at the reaction temperature of 140 °C for 40 min. The anticipated catalytic system's activation energy (Ea) was found to be 29.11 kJ/mol. Hence, a practical, inexpensive and sustainable process with the potential of high-value platform chemicals, explicitly for a sustainable strategy in a circular bioeconomy was proposed.
Collapse
Affiliation(s)
- Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Pei-Cheng Cheng
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ken-Lin Chang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yen-Ping Peng
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Syu-Ruei Jhang
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Research Center for Environmental Changes, Academia Sinica, 23 Taipei 11529, Taiwan
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
16
|
Extraction, Isolation, and Purification of Value-Added Chemicals from Lignocellulosic Biomass. Processes (Basel) 2022. [DOI: 10.3390/pr10091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review covers the operating conditions for extracting top value-added chemicals, such as levulinic acid, lactic acid, succinic acid, vanillic acid, 3-hydroxypropionic acid, xylitol, 2,5-furandicarboxylic acid, 5-hydroxymethyl furfural, chitosan, 2,3-butanediol, and xylo-oligosaccharides, from common lignocellulosic biomass. Operating principles of novel extraction methods, beyond pretreatments, such as Soxhlet extraction, ultrasound-assisted extraction, and enzymatic extraction, are also presented and reviewed. Post extraction, high-value biochemicals need to be isolated, which is achieved through a combination of one or more isolation and purification steps. The operating principles, as well as a review of isolation methods, such as membrane filtration and liquid–liquid extraction and purification using preparative chromatography, are also discussed.
Collapse
|
17
|
Zhang T, Li W, Xiao H, Jin Y, Wu S. Recent progress in direct production of furfural from lignocellulosic residues and hemicellulose. BIORESOURCE TECHNOLOGY 2022; 354:127126. [PMID: 35398210 DOI: 10.1016/j.biortech.2022.127126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Furfural is a vital biomass-derived platform molecule, which can be used to synthesize a wide range of value-added chemicals. Furfural and its derivatives are promising alternatives to conventional petroleum chemicals. However, recent industrial production of furfural existed some thorny problems, including low efficiency, energy waste, and environmental pollution. Therefore, tremendous and continuous efforts have been made by researchers to develop novel furfural production processes with high economic viability, production efficiency, and sustainability. This review summarized the merits and shortcomings of disparate catalytic systems for the synthesis of furfural from biomass and biomass pretreatment hydrolysate on the basis of recently published literature. Furthermore, the suggestions for furfural production research were put forward.
Collapse
Affiliation(s)
- Tingwei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wenzhi Li
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
18
|
Zhang X, Zhu P, Li Q, Xia H. Recent Advances in the Catalytic Conversion of Biomass to Furfural in Deep Eutectic Solvents. Front Chem 2022; 10:911674. [PMID: 35615315 PMCID: PMC9124943 DOI: 10.3389/fchem.2022.911674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Lignocellulose is recognized as an ideal raw material for biorefinery as it may be converted into biofuels and value-added products through a series of chemical routes. Furfural, a bio-based platform chemical generated from lignocellulosic biomass, has been identified as a very versatile alternative to fossil fuels. Deep eutectic solvents (DES) are new “green” solvents, which have been employed as green and cheap alternatives to traditional organic solvents and ionic liquids (ILs), with the advantages of low cost, low toxicity, and biodegradability, and also have been proven to be effective media for the synthesis of biomass-derived chemicals. This review summarizes the recent advances in the conversion of carbohydrates to furfural in DES solvent systems, which mainly focus on the effect of adding different catalysts to the DES system, including metal halides, water, solid acid catalyst, and certain oxides, on the production of furfural. Moreover, the challenges and perspectives of DES-assisted furfural synthesis in biorefinery systems are also discussed in this review.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Peng Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qinfang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Haian Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- *Correspondence: Haian Xia,
| |
Collapse
|
19
|
Gong L, Zha J, Pan L, Ma C, He YC. Highly efficient conversion of sunflower stalk-hydrolysate to furfural by sunflower stalk residue-derived carbonaceous solid acid in deep eutectic solvent/organic solvent system. BIORESOURCE TECHNOLOGY 2022; 351:126945. [PMID: 35247562 DOI: 10.1016/j.biortech.2022.126945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Sunflower stalk was utilized as a source of raw material and catalyst for furfural production, and efficient conversion of xylose-rich hydrolysate into furfural was developed in an aqueous deep eutectic solvent/organic solvent medium by carbonaceous solid acid catalyst SO42-/SnO2-SSXR. The structural characteristics of SO42-/SnO2-SSXR was characterized by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Fourier-transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Pyridine Adsorption Fourier-transform Infrared (Py-IR) and Raman. Under the optimum catalytic conditions, furfural (110.1 mM) yield reached 82.6% in a ChCl-MAA/toluene medium at 180 °C in 15 min by 3.6 wt% SO42-/SnO2-SSXR. Additionally, quite importantly, SO42-/SnO2-SSXR, ChCl-MAA and toluene had good recyclability for furfural production. The potential catalytic path of xylose dehydration into furfural was proposed by co-catalysis with SO42-/SnO2-SSXR and ChCl-MAA. This study revealed high potential sustainable application of furfural production.
Collapse
Affiliation(s)
- Lei Gong
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Jingjian Zha
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Lei Pan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
20
|
Li Q, Ma C, Di J, Ni J, He YC. Catalytic valorization of biomass for furfuryl alcohol by novel deep eutectic solvent-silica chemocatalyst and newly constructed reductase biocatalyst. BIORESOURCE TECHNOLOGY 2022; 347:126376. [PMID: 34801722 DOI: 10.1016/j.biortech.2021.126376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Chemoenzymatic cascade catalysis using deep eutectic solvent-silica heterogeneous catalyst and reductase biocatalyst was constructed for synthesizing furfuryl alcohol from biomass in one-pot manner. A novel heterogeneous catalyst B:LA-SG(SiO2) was firstly prepared by immobilizing deep eutectic solvent Betaine:Lactic acid on silica with sol-gel method using tetraethyl orthosilicate as silicon source. High furfural yield (45.3%) was achieved from corncob with B:LA-SG(SiO2) catalyst (2.5 wt%) in water at 170 ˚C for 0.5 h. Possible catalytic mechanism for converting biomass into furfural was proposed. Moreover, one newly constructed recombinant E. coli KF2021 cells containing formate dehydrogenase and reductase was utilized to transform corncob-valorized furfural into furfuralcohol at 97.7% yield at pH 7.5 and 40 ˚C via HCOONa-driven coenzyme regeneration. Such a hybrid process was constructed for tandem chemocatalysis and biocatalysis in a same reactor, potentially reducing the operation cost, which had potential application for valorization of biomass to value-added furans.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, China
| | - Junhua Di
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China
| | - Jiacheng Ni
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China
| | - Yu-Cai He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
21
|
Chemoenzymatic Conversion of Biomass-Derived D-Xylose to Furfuryl Alcohol with Corn Stalk-Based Solid Acid Catalyst and Reductase Biocatalyst in a Deep Eutectic Solvent–Water System. Processes (Basel) 2022. [DOI: 10.3390/pr10010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this work, the feasibility of chemoenzymatically transforming biomass-derived D-xylose to furfuryl alcohol was demonstrated in a tandem reaction with SO42−/SnO2-CS chemocatalyst and reductase biocatalyst in the deep eutectic solvent (DES)–water media. The high furfural yield (44.6%) was obtained by catalyzing biomass-derived D-xylose (75.0 g/L) in 20 min at 185 °C with SO42−/SnO2-CS (1.2 wt%) in DES ChCl:EG–water (5:95, v/v). Subsequently, recombinant E.coli CF cells harboring reductases transformed D-xylose-derived furfural (200.0 mM) to furfuryl alcohol in the yield of 35.7% (based on D-xylose) at 35 °C and pH 7.5 using HCOONa as cosubstrate in ChCl:EG–water. This chemoenzymatic cascade catalysis strategy could be employed for the sustainable production of value-added furan-based chemical from renewable bioresource.
Collapse
|
22
|
Yang T, Chen D, Li W, Zhang H. Efficient conversion of corn stover to 5-hydroxymethylfurfural and furfural using a novel acidic resin catalyst in water-1, 4-dioxane system. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|