1
|
Van Duc L, Inoue D, Ike M. Combined inhibition of anaerobic digestion by sulfate, salinity, and ammonium: potential inhibitory factors in forward osmosis-concentrated municipal wastewater. CHEMOSPHERE 2025; 377:144318. [PMID: 40101676 DOI: 10.1016/j.chemosphere.2025.144318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/15/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
This study investigated the combined and interactive effects of sulfate, salinity (NaCl), and ammonium on mesophilic anaerobic digestion using synthetic wastewater simulating concentrated municipal wastewater from the forward osmosis (FO) process. Batch anaerobic digestion experiments were conducted with varying concentrations of sulfate, NaCl, and ammonium. Complete sulfate reduction was observed in all test systems, regardless of the NaCl and ammonium concentration, indicating no significant inhibitory effect on sulfate-reducing bacteria (SRB). However, the increased toxicity of hydrogen sulfide produced by SRB under high concentrations of sulfate, NaCl, and ammonium inhibited methanogenic activity, resulting in reduced methane production. Despite this, methanogens, primarily Methanosarcina, tolerated low and moderate levels of sulfate, NaCl, and ammonium; thus, their coexistence with SRB (Desulfotomaculales) enabled efficient acetate utilization and methane production. The enhanced Methanosarcina activity was further confirmed through the antagonistic effects between NaCl and ammonium. No significant decrease in methane production was observed in the co-presence of 0.5 g/L sulfate, 10 g/L NaCl, and 1 g/L ammonium-nitrogen compared to the reference condition without the addition of these components. This study identified the inhibitory mechanisms resulting from sulfate, NaCl, and ammonium interactions, which may occur in FO-concentrated municipal wastewater. These findings offer insights for optimizing the FO process to maintain sulfate, NaCl, and ammonium concentrations below inhibitory levels, thereby ensuring efficient methane production.
Collapse
Affiliation(s)
- Luong Van Duc
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Sun X, Hu P, Xiao M, Zhang S, Shi J, Cai D, Wang D, Xu L, Liu L, Liu Y. Synergy of multi-enzyme pretreatment and Paraclostridium benzoelyticum bioaugmentation: A dual strategy for enhancing methane production in dry anaerobic digestion of kitchen waste. ENVIRONMENTAL RESEARCH 2025; 278:121671. [PMID: 40268215 DOI: 10.1016/j.envres.2025.121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
Dry anaerobic digestion (DAD) of kitchen waste (KW) has low methane production due to the poor mass transfer and the low abundance of functional microorganisms. This study employed multi-enzyme pretreatment (PRE), bioaugmentation with Paraclostridium benzoelyticum (BIO), and their combination (COM) to enhance methane production. Interestingly, the COM group had the highest methane production, which was increased by 18.51 %, 9.91 % and 12.39 % compared with the control, PRE and BIO groups, respectively, which indicated that there was a synergy between multi-enzyme pretreatment and bioaugmentation. Further analysis of microbial community and metagenome was conducted to reveal the synergistic mechanism. The results showed that in COM group, the enrichment of the Rikenellaceae, Methanobacteriaceae and Methanosaetaceae was the directly reason for enhancing methane production. Additionally, key metabolic functions including biosynthesis of cofactors, methane metabolism and oxidative phosphorylation also played a pivotal role in boosting methane production. Furthermore, the enhancement of the hydrogenotrophic methanogenesis pathway has been demonstrated to be a critical factor in the synergistic effects. It provided a reliable theoretical basis for the practical application of the multi-enzyme pretreatment combined with Paraclostridium benzoelyticum bioaugmentation for DAD.
Collapse
Affiliation(s)
- Xueru Sun
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Panpan Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Mengyao Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Siying Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Lin Xu
- Shanghai Pudong Environment and Energy Development Co., Ltd, Shanghai, 200127, China
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China.
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
3
|
Bae I, Rhee C, Shin J, Cho K, Triolo JM, Shin SG. Insights into high ammonia-resistant syntrophic microbiomes and metabolic pathways during continuous anaerobic digestion of cow manure. BIORESOURCE TECHNOLOGY 2025; 422:132235. [PMID: 39956519 DOI: 10.1016/j.biortech.2025.132235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Understanding microbial responses to ammonia is critical for defining thresholds and ensuring stable operation of anaerobic digestion (AD); however, an understanding of the microbiome's resistance mechanisms to high-total-ammonia-nitrogen (TAN) conditions remains limited. This study determined a TAN threshold of 7 g/L for continuous cow manure AD with increasing TAN levels. TAN was identified as the most critical factor influencing the AD performance, with CH4 production decreasing by > 50 % beyond this level. Additionally, a highly TAN-resistant syntrophic microbiome was identified through network analysis, highlighting key bacteria, Thauera phenolivorans and Fermentimons spp., alongside hydrogenotrophic methanogens. Interestingly, shifts were observed within the hydrogenotrophic methanogen community, transitioning from Methanoculleus bourgensis to Methanoculleus chikugoensis, Methanocorpusculum spp. and Methanobacterium spp. under high-TAN conditions. Significant metabolic pathways specific to high-TAN environments were identified, providing insights into their roles in sustained operation of AD. These findings highlight the performance limitations and functional redundancy under high-TAN conditions.
Collapse
Affiliation(s)
- Ilho Bae
- Department of Energy System Engineering, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Chaeyoung Rhee
- Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Juhee Shin
- Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Mi Triolo
- Department of Energy System Engineering, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea.
| | - Seung Gu Shin
- Department of Energy System Engineering, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea.
| |
Collapse
|
4
|
Guo X, Wang J. Guidelines for selection and application of kinetics models in bioproduction processes. Trends Biotechnol 2024:S0167-7799(24)00320-2. [PMID: 39672764 DOI: 10.1016/j.tibtech.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 12/15/2024]
Abstract
Biotechnology is widely used in bioproduction to transform waste into valuable products. A comprehensive understanding of the kinetics involved is crucial for optimizing system designs. In this review, we explore various kinetics models (e.g., the Gompertz, Logistic, Cone, first-order, Monod, and Andrews models) used in describing bioproduction processes. We focus on their interpretation and applications in microbial growth, bioproduct formation, substrate consumption, and the factors influencing bioproduction processes. We provide guidelines for selecting appropriate kinetics models, emphasizing their suitability for different kinetic processes under varying conditions. Additionally, we discuss the importance of statistical parameters in evaluating model performance. This review presents a framework for applying these models to effectively predict and optimize bioproduction systems.
Collapse
Affiliation(s)
- Xuan Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Adams M. Ammonia-stressed anaerobic digestion: Sensitivity dynamics of key syntrophic interactions and methanogenic pathways-A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123183. [PMID: 39492135 DOI: 10.1016/j.jenvman.2024.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The problematic anaerobic digestion (AD) of protein-rich substrates owing to their high ammonia content continues to hinder optimum methanation despite their high potential for offsetting greenhouse gas (GHG) emissions. This review focuses on the analyses of the sensitivity dynamics of key AD processes as well as the microbial interactions and exchanges that occur with them. Aside from the apparent increased risk associated with thermophilic ammonia-rich substrate AD, the marginally higher energy generation compared to mesophilic systems is not commensurate to the energy requirement. Moreover, while comparable FAN thresholds have been confirmed, TAN thresholds are susceptible to physical chemistry and so vary greatly. Profiling of the metabolic capability of front-end AD microbiome revealed Bacteroidetes, Firmicutes, and Synergistetes as some of the ammonia-resilient bacteria groups while Proteobacteria and Actinobacteria were the most fragile taxa. Besides the predominance of incomplete propionate oxidizing bacteria under ammonia stress conditions, syntrophic propionate oxidation (SPO) is usually shifted from the methylmalonyl CoA to the dismutation pathway. Furthermore, besides their different recoverability potentials, distinct methanogenic groups are differentially impacted by different ammonia species. Prevailing literature evidence suggests that conductive material assisted bioaugmentation with SAO-HM consortia, and in-situ H2 supplementation are the most effective for expediting electron transfer and relieving ammonia stress. These valuable insights should inform the design of targeted ammonia inhibition mitigation strategies.
Collapse
Affiliation(s)
- Mabruk Adams
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 TK33, Ireland.
| |
Collapse
|
6
|
Duc LV, Nagao S, Mojarrad M, Miyagawa Y, Li ZY, Inoue D, Tajima T, Ike M. Bioaugmentation with marine sediment-derived microbial consortia in mesophilic anaerobic digestion for enhancing methane production under ammonium or salinity stress. BIORESOURCE TECHNOLOGY 2023; 376:128853. [PMID: 36898569 DOI: 10.1016/j.biortech.2023.128853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Ammonium (NH4+) and salinity (NaCl) inhibit CH4 production in anaerobic digestion. However, whether bioaugmentation using marine sediment-derived microbial consortia can relieve the inhibitory effects of NH4+ and NaCl stresses on CH4 production remains unclear. Thus, this study evaluated the effectiveness of bioaugmentation using marine sediment-derived microbial consortia in alleviating the inhibition of CH4 production under NH4+ or NaCl stress and elucidated the underlying mechanisms. Batch anaerobic digestion experiments under 5 gNH4-N/L or 30 g/L NaCl were performed with or without augmentation using two marine sediment-derived microbial consortia pre-acclimated to high NH4+ and NaCl. Compared with non-bioaugmentation, bioaugmentation reinforced CH4 production. Network analysis revealed the joint effects of microbial connections by Methanoculleus, which promoted the efficient consumption of propionate accumulated under NH4+ and NaCl stresses. In conclusion, bioaugmentation with pre-acclimated marine sediment-derived microbial consortia can mitigate the inhibition under NH4+ or NaCl stress and enhance CH4 production in anaerobic digestion.
Collapse
Affiliation(s)
- Luong Van Duc
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shintaro Nagao
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mohammad Mojarrad
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Yuta Miyagawa
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Zi-Yan Li
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahisa Tajima
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
Duc LV, Miyagawa Y, Inoue D, Ike M. Identification of key steps and associated microbial populations for efficient anaerobic digestion under high ammonium or salinity conditions. BIORESOURCE TECHNOLOGY 2022; 360:127571. [PMID: 35788390 DOI: 10.1016/j.biortech.2022.127571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Ammonium (NH4+) and salinity are major inhibitors of CH4 production in anaerobic digestion. This study evaluated their inhibitory effects on CH4 production and explored the key populations for efficient CH4 production under high NH4+ and NaCl concentrations to understand their inhibition mechanisms. Comparative batch experiments for mesophilic anaerobic digestion were conducted using three seeding sludges under different concentrations of NH4+ (1-5 gNH4-N/L) and NaCl (10-30 g/L). Although all sludges tolerated 3 gNH4-N/L and 10 g/L NaCl, NH4+ or NaCl concentrations higher than these substantially reduced CH4 production, depending on the seeding sludge, primarily by impairing the initial hydrolysis and methanogenesis steps. In addition, propionate was found to be a deterministic factor affecting CH4 production. Based on microbial community analysis, Candidatus Brevefilum was identified as a potential syntrophic propionate-oxidizing bacterium that facilitates the mitigation of propionate accumulation, allowing the maintenance of unaffected CH4 production under high inhibitory conditions.
Collapse
Affiliation(s)
- Luong Van Duc
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuta Miyagawa
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
He L, Yu J, Lin Z, Huang Y, He X, Shi S, Zhou J. Organic matter removal performance, pathway and microbial community succession during the construction of high-ammonia anaerobic biosystems treating anaerobic digestate food waste effluent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115428. [PMID: 35649332 DOI: 10.1016/j.jenvman.2022.115428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/28/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to establish anaerobic biosystems which could tolerate high ammonia, and investigate the microbial community structure in these reactors. High-ammonia anaerobic biosystems that could tolerate 3600 mg L-1 total ammonia nitrogen (TAN) and 1000 mg L-1 free ammonia nitrogen (FAN) were successfully established. The removal efficiencies of COD and total volatile fatty acids (TVFAs) in R1 with dewatered sludge as inoculum were 68.8% and 69.2%, respectively. The maximum methane production rate reached 71.7 ± 1.0 mL CH4 L-1 d-1 at a TAN concentration of 3600 mg L-1. The three-dimension excitation-emission matrix analysis indicated that both easily degradable organics and refractory organics were removed from ADFE in R1 and R2. Functional microorganisms which could bear high ammonia were gradually enriched as TAN stress was elevated. Lysinibacillus, Coprothermobacter and Sporosarcina dominated the final bacterial community. Archaeal community transformed to hydrogenotrophic methanogen. The synergy of Coprothermobacter and Methanothermobacter undertook the organic matter degradation, and was enhanced by increasing TAN stress. This study offers new insights into anaerobic bioremediation of ammonia-rich wastewater.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jianbo Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yangyang Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
9
|
Donoso-Bravo A, Sadino-Riquelme MC, Valdebenito-Rolack E, Paulet D, Gómez D, Hansen F. Comprehensive ADM1 Extensions to Tackle Some Operational and Metabolic Aspects in Anaerobic Digestion. Microorganisms 2022; 10:microorganisms10050948. [PMID: 35630393 PMCID: PMC9143495 DOI: 10.3390/microorganisms10050948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Modelling in anaerobic digestion will play a crucial role as a tool for smart monitoring and supervision of the process performance and stability. By far, the Anaerobic Digestion Model No. 1 (ADM1) has been the most recognized and exploited model to represent this process. This study aims to propose simple extensions for the ADM1 model to tackle some overlooked operational and metabolic aspects. Extensions for the discontinuous feeding process, the reduction of the active working volume, the transport of the soluble compound from the bulk to the cell interior, and biomass acclimation are presented in this study. The model extensions are included by a change in the mass balance of the process in batch and continuous operation, the incorporation of a transfer equation governed by the gradient between the extra- and intra- cellular concentration, and a saturation-type function where the time has an explicit influence on the kinetic parameters, respectively. By adding minimal complexity to the existing ADM1, the incorporation of these phenomena may help to understand some underlying process issues that remain unexplained by the current model structure, broadening the scope of the model for control and monitoring industrial applications.
Collapse
Affiliation(s)
- Andrés Donoso-Bravo
- ProCycla SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile; (M.C.S.-R.); (E.V.-R.); (D.P.); (D.G.); (F.H.)
- ProCycla SL, Carretera Pont de Vilomara 140, 2-1, 08241 Manresa, Spain
- Department of Chemical Engineering, Universidad Técnica Federico Santa Maria, Valparaíso 2390123, Chile
- Correspondence:
| | - María Constanza Sadino-Riquelme
- ProCycla SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile; (M.C.S.-R.); (E.V.-R.); (D.P.); (D.G.); (F.H.)
- ProCycla SL, Carretera Pont de Vilomara 140, 2-1, 08241 Manresa, Spain
| | - Emky Valdebenito-Rolack
- ProCycla SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile; (M.C.S.-R.); (E.V.-R.); (D.P.); (D.G.); (F.H.)
- ProCycla SL, Carretera Pont de Vilomara 140, 2-1, 08241 Manresa, Spain
- Aroma SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile
| | - David Paulet
- ProCycla SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile; (M.C.S.-R.); (E.V.-R.); (D.P.); (D.G.); (F.H.)
- ProCycla SL, Carretera Pont de Vilomara 140, 2-1, 08241 Manresa, Spain
| | - Daniel Gómez
- ProCycla SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile; (M.C.S.-R.); (E.V.-R.); (D.P.); (D.G.); (F.H.)
- ProCycla SL, Carretera Pont de Vilomara 140, 2-1, 08241 Manresa, Spain
| | - Felipe Hansen
- ProCycla SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile; (M.C.S.-R.); (E.V.-R.); (D.P.); (D.G.); (F.H.)
- ProCycla SL, Carretera Pont de Vilomara 140, 2-1, 08241 Manresa, Spain
- Aroma SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile
| |
Collapse
|
10
|
Han Y, Agyeman F, Green H, Tao W. Stable, high-rate anaerobic digestion through vacuum stripping of digestate. BIORESOURCE TECHNOLOGY 2022; 343:126133. [PMID: 34655785 DOI: 10.1016/j.biortech.2021.126133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
This study coupled anaerobic digestion with vacuum stripping to achieve stable digestion at higher organic loading rates. Besides mitigation of ammonia inhibition, vacuum stripping of digestate improves solids solubilization and dewaterability due to vacuum-enhanced low-temperature thermal and mild-alkaline treatment under the vacuum stripping conditions (65 °C, 25-27 kPa, and pH 9). Batch vacuum stripping for 8 h removed 97.4-99.4% of ammonia, increased the dissolved fraction of volatile solids (VS) by 72.5%, and improved dewaterability with 30% decreases in time-to-filter and viscosity. The digesters having 2.9% of digestate replaced daily by vacuum stripped digestate were stable up to organic loading rate of 4.3 g-VS/Lreactor/d with biogas production at 3.15 L/Lreactor/d, while the digesters without stripping attained biogas production of 1.90 L/Lreactor/d at its highest stable organic loading rate of 2.5 g-VS/Lreactor/d. Acetoclastic Methanosaeta were the dominant methanogens, which became more resistant to ammonia stress in the digesters with vacuum stripping.
Collapse
Affiliation(s)
- Youl Han
- Department of Environmental Resources Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Fred Agyeman
- Department of Environmental Resources Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Hyatt Green
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Wendong Tao
- Department of Environmental Resources Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA.
| |
Collapse
|