1
|
Yadav K, Vashisht M, Rai MP. Employing microalgae cultivation on fruits and vegetable peel waste to produce biofuel, lutein, and biochar concurrently with an "Agro to Agro" algae biorefinery approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1415-1429. [PMID: 39731671 DOI: 10.1007/s11356-024-35735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024]
Abstract
The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.8 mg L-1 for orange peels, 35.5 mg L-1 for papaya peels, and 35.5 mg L-1 for pumpkin peels were identified, alongside a light intensity of 163.7 µmol m-2 s-1 and a nitrogen concentration of 0.8 g L-1. Under these conditions, Chlorella sorokiniana demonstrated peak biomass production of 3.16 g L-1, lipid productivity of 1.55 g L-1, and carotenoid productivity of 9.18 mg L-1, additionally, yielding significant amounts of palmitic acid (47.9%) and lutein. The study further explored the conversion of residual microalgae into biochar, with optimal pyrolysis conducted at 350 °C. The as-synthesized biochar was utilized effectively as a soil amendment for cultivating Vigna radiata. The present study underscores the viability of a closed-loop biorefinery approach, demonstrating the recycling of pumpkin, papaya, and orange peels as effective substrates for microalgae cultivation and subsequent biochar conversion for potential industrial applications. The promising results of the study advocate to the feasibility of this integrated model for sustainable future.
Collapse
Affiliation(s)
- Kushi Yadav
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Manasvi Vashisht
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Monika Prakash Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
2
|
Cheng R, Huang D, Xu X, Yang F. Optimal algae species inoculation strategy for algal-bacterial granular sludge: Sludge characteristics, performance and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123011. [PMID: 39447357 DOI: 10.1016/j.jenvman.2024.123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/16/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
The algal-bacterial granular sludge (ABGS) system is emerging as a promising technology for future wastewater treatment. This study assessed the impact of different algae species inoculation on granulation, performance, and microbial communities within ABGS systems. The experimental setup included single-species inoculations (Chlorella sp. (R1), Scenedesmus sp. (R2), and Desmodesmus sp. (R3)) and a mixed-species inoculation strategy (R4). Results revealed that R4 achieved the fastest completed granulation process (15 days) with the largest average granule diameter (772.93 μm) and highest physical strength (2.24 ± 0.26%) in the end of the experiment. The relative abundance of extracellular polymeric substances secreting bacteria of R4 maintained high level in whole operation time. Algae assimilation capacity and the abundance of functional bacteria can also influence removal performance. In mature stage, only the average effluent total nitrogen (3.15 ± 2.87 mg/L), total phosphorus (0.37 ± 0.27 mg/L), chemical oxygen demand (25.25 ± 2.98 mg/L) concentration in R4 was lower than that of Grade I discharge standard of municipal wastewater treatment plants in China. The best inorganic carbon utilization and lipid production ability were observed in R4 and R3, respectively. The choice of inoculated algae species was identified as a key factor for bacterial community dynamics. Overall, above results demonstrated that mixed algae species inoculation can be selected as the optimal algae inoculation strategy due to its excellent granulation, performance, and acceptable carbon utilization and lipid production.
Collapse
Affiliation(s)
- Rui Cheng
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, PR China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Dan Huang
- China State Shipbuilding Corporation Environmental Development Co., Ltd, Beijing, 100039, PR China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, PR China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, PR China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
3
|
Costa MM, Spínola MP, Prates JAM. Microalgae as an Alternative Mineral Source in Poultry Nutrition. Vet Sci 2024; 11:44. [PMID: 38275926 PMCID: PMC10819150 DOI: 10.3390/vetsci11010044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
This review explores the potential of microalgae as a sustainable and nutritionally rich alternative for mineral supplementation in poultry diets, addressing both the opportunities and challenges in this emerging field. Poultry nutrition, pivotal to the health and productivity of birds, traditionally relies on inorganic and organic mineral sources which, while effective, raise environmental and economic concerns. Microalgae offer a promising solution with their high contents of essential minerals, proteins, vitamins, and bioactive compounds. This review delves into the nutritional profiles of various microalgae, highlighting their rich contents of minerals which are crucial for physiological processes in poultry. It examines the bioavailability of these minerals and their impact on poultry health and productivity. Furthermore, it evaluates the environmental sustainability of microalgae cultivation and acknowledges the challenges in using microalgae in poultry diets, particularly in terms of the economic viability of large-scale production and the consistency of nutrient composition. It discusses the importance of rigorous safety assessments and regulatory compliance, given the potential risks of toxins and heavy metals. Overall, this analysis aims to provide a clear understanding of the role microalgae could play in poultry nutrition and address sustainability challenges in animal agriculture while also considering future perspectives and advancements needed in this field.
Collapse
Affiliation(s)
- Mónica M. Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.M.C.); (M.P.S.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Maria P. Spínola
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.M.C.); (M.P.S.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.M.C.); (M.P.S.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
4
|
Jiang Y, Chen X, Wang Z, Deng H, Qin X, Huang L, Shen P. Potential application of a newly isolated microalga Desmodesmus sp. GXU-A4 for recycling Molasses vinasse. CHEMOSPHERE 2023; 328:138616. [PMID: 37028718 DOI: 10.1016/j.chemosphere.2023.138616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/11/2023] [Accepted: 04/03/2023] [Indexed: 05/14/2023]
Abstract
The development of cost-effective and energy-efficient technologies for the stabilization of organic wastewater by microalgae has been essential and sought after. In the current study, GXU-A4 was isolated from an aerobic tank treating molasses vinasse (MV) and identified as Desmodesmus sp. based on its morphology, rbcL, and ITS sequences. It exhibited good growth with a high lipid content and chemical oxygen demand (COD) when grown using MV and the anaerobic digestate of MV (ADMV) as the growth medium. Three distinct COD concentrations for wastewater were established. Accordingly, GXU-A4 removed more than 90% of the COD from molasses vinasse (MV1, MV2, and MV3) with initial COD concentrations of 1193 mgL-1, 2100 mgL-1, and 3180 mgL-1, respectively. MV1 attained the highest COD and color removal rates of 92.48% and 64.63%, respectively, and accumulated 47.32% DW (dry weight) of lipids and 32.62% DW of carbohydrates, respectively. Moreover, GXU-A4 grew rapidly in anaerobic digestate of MV (ADMV1, ADMV2, and ADMV3) with initial COD concentrations of 1433 mgL-1, 2567 mgL-1, and 3293 mgL-1, respectively. Under ADMV3 conditions, the highest biomass reached 13.81 g L-1 and accumulated 27.43% DW of lipids and 38.70% DW of carbohydrates, respectively. Meanwhile, the removal rates of NH4-N and chroma in ADMV3 reached 91.10% and 47.89%, respectively, significantly reducing the concentration of ammonia nitrogen and color in ADMV. Thus, the results demonstrate that GXU-A4 has a high fouling tolerance, a rapid growth rate in MV and ADMV, the ability to achieve biomass accumulation and nutrient removal from wastewater, and a high potential for MV recycling.
Collapse
Affiliation(s)
- Yu Jiang
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Xinqiang Chen
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Zihao Wang
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Hongyu Deng
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Xinhua Qin
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Luodong Huang
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China.
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China.
| |
Collapse
|
5
|
Integrated Omics Approach to Discover Differences in the Metabolism of a New Tibetan Desmodesmus sp. in Two Types of Sewage Treatments. Metabolites 2023; 13:metabo13030388. [PMID: 36984828 PMCID: PMC10058882 DOI: 10.3390/metabo13030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Microalgae are now widely applied in municipal (YH_3) and industrial sewage (YH_4) treatments. Through integrated omics analysis, we studied the similarities and differences at the molecular level between the two different types of sewage treatment processes. The most significantly enriched gene ontology (GO) terms in both types of sewage treatments were the ribosome, photosynthesis, and proteasome pathways. The results show that the pathways of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were enriched for photosynthesis, glyoxylate and dicarboxylate metabolism, and carbon fixation in photosynthetic organisms. Considering YH_3 vs. YH_4, the metabolism of citrate, sedoheptulose-7P, and succinate was significantly upregulated. In addition, the results showed that the pathways of DEGs and DAMs were enriched in terms of amino acid metabolism and carotenoid biosynthesis in YH_4 vs. YH_3. The metabolism of S-Adenosyl-L-homocysteine was significantly downregulated, 2-oxobutanoate was significantly upregulated and downregulated, and the metabolism of abscisic acid glucose ester (ABA-GE) was also significantly upregulated. Overall, the results of this paper will help to improve the basic knowledge of the molecular response of microalgae to sewage treatments, and help design a response strategy based on microalgae for complex, mixed sewage treatments.
Collapse
|
6
|
Ferreira GF, Pinto LFR, Filho RM, Fregolente LV. Maximizing unsaturated fatty acids production by using sugarcane agroindustry wastes in cultivation of Desmodesmus sp. in a flat plate photobioreactor. J Biotechnol 2022; 360:117-124. [PMID: 36375622 DOI: 10.1016/j.jbiotec.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Microalgae lipid accumulation can be accomplished by different strategies rather than naturally reaching the stationary phase. Many studies employ nitrogen (N) depletion to improve lipid production; however, this approach might not be a suitable alternative when growth in wastewater is attempted. Agro-industry effluents in particular can have high concentrations of N, so nutrient removal is also required. This study evaluated two possibilities of achieving stress conditions in Desmodesmus sp. cultivation: light intensity and CO2 concentration. The culture medium also included liquid and solid residues from the sugarcane agro-industry: vinasse and a biofertilizer produced from bagasse biochar. Optimization of growth in a flat plate photobioreactor was conducted by combining a two-level factorial design and simplex methodology. Both the highest biomass and polyunsaturated fatty acid productivities (150.2 and 21.4 mg L-1 day-1, respectively) were achieved near the central points (5% CO2 in air and 1000 μmol m-2 s-1 light intensity). These results show the possibility of microalgae growth in a sustainable medium coupled with high-value lipid production, e.g., omegas-3, - 6, and - 9.
Collapse
|
7
|
Zhang W, Xia R, Wang H, Pu S, Jiang D, Hao X, Bai L. Swine wastewater treatment by combined process of iron carbon microelectrolysis-physical adsorption-microalgae cultivation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:914-924. [PMID: 35166710 DOI: 10.2166/wst.2021.619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Combined treatments were designed based on iron-carbon micro-electrolysis treatment (ICME), physical adsorption (PA) with zeolite (Z) or vermiculite (V) and microalgae cultivation (MC, Chlorella vulgaris) for removing pollutants from swine wastewater (SW): ICME + MC (IM), ICME + Z + MC (IZM) and ICME + V + MC (IVM). Results showed that the minimum total nitrogen (TN) of 43.66 mg L-1, NH4+-N of 1.33 mg-1 and total phosphorus (TP) of 0.14 mg-1 were obtained by IVM, while the minimum chemical oxygen demand (COD) was 105 mg-1 via IM. During the process of combined treatments, ICME contributed most to the removal of TN (84.52% by IZM), TP (97.78% by IVM and IZM) and COD (62.44% by IVM), and maximum NH4+-N removal (55.64%) was obtained by MC procedure in IM process. Vermiculite performed better than zeolite during all the combined treatments. Besides, the maximum cell dry weight (CDW, 0.74 g-1) of C. vulgaris was obtained by IM on day 13. The results provide an efficient integrated method for swine wastewater treatment.
Collapse
Affiliation(s)
- Wenjin Zhang
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China E-mail: ; Chongqing Academy of Animal Sciences, Scientific Observation and Experiment Engineering in Southwest for Ministry of Agriculture and Rural Affairs, Chongqing 402460, China
| | - Rongbin Xia
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China E-mail:
| | - Hao Wang
- Chongqing Academy of Animal Sciences, Scientific Observation and Experiment Engineering in Southwest for Ministry of Agriculture and Rural Affairs, Chongqing 402460, China
| | - Shihua Pu
- Chongqing Academy of Animal Sciences, Scientific Observation and Experiment Engineering in Southwest for Ministry of Agriculture and Rural Affairs, Chongqing 402460, China
| | - Dongmei Jiang
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China E-mail:
| | - Xiaoxia Hao
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China E-mail:
| | - Lin Bai
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China E-mail:
| |
Collapse
|