1
|
Mehariya S, Annamalai SN, Thaher MI, Quadir MA, Khan S, Rahmanpoor A, Abdurahman Kashem, Faisal M, Sayadi S, Al Hawari A, Al-Jabri H, Das P. A comprehensive review on versatile microalga Tetraselmis: Potentials applications in wastewater remediation and bulk chemical production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121520. [PMID: 38917540 DOI: 10.1016/j.jenvman.2024.121520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Microalgae are considered sustainable resources for the production of biofuel, feed, and bioactive compounds. Among various microalgal genera, the Tetraselmis genus, containing predominantly marine microalgal species with wide tolerance to salinity and temperature, has a high potential for large-scale commercialization. Until now, Tetraselmis sp. are exploited at smaller levels for aquaculture hatcheries and bivalve production. However, its prolific growth rate leads to promising areal productivity and energy-dense biomass, so it is considered a viable source of third-generation biofuel. Also, microbial pathogens and contaminants are not generally associated with Tetraselmis sp. in outdoor conditions due to faster growth as well as dominance in the culture. Numerous studies revealed that the metabolite compositions of Tetraselmis could be altered favorably by changing the growth conditions, taking advantage of its acclimatization or adaptation ability in different conditions. Furthermore, the biorefinery approach produces multiple fractions that can be successfully upgraded into various value-added products along with biofuel. Overall, Tetraselmis sp. could be considered a potential strain for further algal biorefinery development under the circular bioeconomy framework. In this aspect, this review discusses the recent advancements in the cultivation and harvesting of Tetraselmis sp. for wider application in different sectors. Furthermore, this review highlights the key challenges associated with large-scale cultivation, biomass harvesting, and commercial applications for Tetraselmis sp.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Senthil Nagappan Annamalai
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohammed Abdul Quadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Ali Rahmanpoor
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Abdurahman Kashem
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohamed Faisal
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Sami Sayadi
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa Al Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Hareb Al-Jabri
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
2
|
Tran HD, Ong BN, Ngo VT, Tran DL, Nguyen TC, Tran-Thi BH, Do TT, Nguyen TML, Nguyen XH, Melkonian M. New Angled Twin-layer Porous Substrate Photobioreactors for Cultivation of Nannochloropsis oculata. Protist 2022; 173:125914. [PMID: 36270076 DOI: 10.1016/j.protis.2022.125914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 09/25/2022] [Indexed: 12/30/2022]
Abstract
An angled twin-layer porous substrate photobioreactor (TL-PSBR) using LED light was designed to cultivate Nannochloropsis oculata. Flocculation and sedimentation by modification of pH to 11 were determined as the optimal method for harvesting the N. oculata inoculum. The following optimised parameters were found: tilt angle 15°, Kraft 220 g m-2 paper as substrate material, initial inoculum density of 12.5 g m-2, 140 µmol photons m-2 s-1 light intensity, and a light/dark cycle of 6:6 (h). Test cultivation for 14 days was performed under optimised conditions. The total dried biomass standing crop was 75.5 g m-2 growth area with an average productivity of 6.3 g m-2 d-1, the productivity per volume of used culture medium was 126.2 mg/L d-1, total lipid content 21.9% (w/w), and the highest productivity of total lipids was 1.33 g m-2 d-1. The dry algal biomass contained 3% eicosapentaenoic acid (w/w), 3.7% palmitoleic acid (w/w), and 513 mg kg-1 vitamin E. The optimisation of N. oculata cultivation on an angled TL-PSBR system yielded promising results, and applications for commercial products need to be further explored.
Collapse
Affiliation(s)
- Hoang-Dung Tran
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, 72009 Ho Chi Minh City, Viet Nam; Institute of Applied Research and Technology Transfer HUFI, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, 72009 Ho Chi Minh City, Viet Nam.
| | - Binh-Nguyen Ong
- Faculty of Biotechnology, Nguyen-Tat-Thanh University, 298A-300A Nguyen-Tat-Thanh Street, District 04, Hochiminh City 72820, Viet Nam
| | - Vinh-Tuong Ngo
- Institute of Applied Research and Technology Transfer HUFI, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, 72009 Ho Chi Minh City, Viet Nam
| | - Dai-Long Tran
- Van Lang University, Nguyen Khac Nhu Street, Co Giang Ward, Distric 01, Hochiminh City 72820, Viet Nam
| | - Thanh-Cong Nguyen
- Faculty of Biotechnology, Nguyen-Tat-Thanh University, 298A-300A Nguyen-Tat-Thanh Street, District 04, Hochiminh City 72820, Viet Nam
| | - Bich-Huy Tran-Thi
- Faculty of Biotechnology, Nguyen-Tat-Thanh University, 298A-300A Nguyen-Tat-Thanh Street, District 04, Hochiminh City 72820, Viet Nam
| | - Thanh-Tri Do
- Faculty of Biology, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District Ho Chi Minh City, Viet Nam
| | - Tran-Minh-Ly Nguyen
- Faculty of Business Administration, TU Bergakademie Freiberg, Akademiestraße 6, Freiberg 09599, Germany
| | - Xuan-Hoang Nguyen
- International Medical Consultants Ltd. Company, No 9, Lot A, Group 100, Hoang Cau, O Cho Dua Ward, Dong Da District, Hanoi 11511, Viet Nam
| | - Michael Melkonian
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Group Integrative Bioinformatics, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
3
|
Wong YY, Rawindran H, Lim JW, Tiong ZW, Liew CS, Lam MK, Kiatkittipong W, Abdelfattah EA, Oh WD, Ho YC. Attached microalgae converting spent coffee ground into lipid for biodiesel production and sequestering atmospheric CO2 simultaneously. ALGAL RES 2022; 66:102780. [DOI: 10.1016/j.algal.2022.102780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|