1
|
Bayuo J, Rwiza MJ, Choi JW, Njau KN, Mtei KM. Recent and sustainable advances in phytoremediation of heavy metals from wastewater using aquatic plant species: Green approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122523. [PMID: 39305882 DOI: 10.1016/j.jenvman.2024.122523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
A key component in a nation's economic progress is industrialization, however, hazardous heavy metals that are detrimental to living things are typically present in the wastewater produced from various industries. Therefore, before wastewater is released into the environment, it must be treated to reduce the concentrations of the various heavy metals to maximum acceptable levels. Even though several biological, physical, and chemical remediation techniques are found to be efficient for the removal of heavy metals from wastewater, these techniques are costly and create more toxic secondary pollutants. However, phytoremediation is inexpensive, environmentally friendly, and simple to be applied as a green technology for heavy metal detoxification in wastewater. The present study provides a thorough comprehensive review of the mechanisms of phytoremediation, with an emphasis on the possible utilization of plant species for the treatment of wastewater containing heavy metals. We have discussed the concept, its applications, advantages, challenges, and independent variables that determine how successful and efficient phytoremediation could be in the decontamination of heavy metals from wastewater. Additionally, we argue that the standards for choosing aquatic plant species for target heavy metal removal ought to be taken into account, as they influence various aspects of phytoremediation efficiency. Following the comprehensive and critical analysis of relevant literature, aquatic plant species are promising for sustainable remediation of heavy metals. However, several knowledge gaps identified from the review need to be taken into consideration and possibly addressed. Therefore, the review provides perspectives that indicate research needs and future directions on the application of plant species in heavy metal remediation.
Collapse
Affiliation(s)
- Jonas Bayuo
- School of Science, Mathematics, and Technology Education (SoSMTE), C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Ghana; School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania; Graduate School of International Agricultural Technology, Seoul National University, South Korea.
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| | - Joon Weon Choi
- Graduate School of International Agricultural Technology, Seoul National University, South Korea
| | - Karoli Nicholas Njau
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| |
Collapse
|
2
|
Mandal RR, Bashir Z, Mandal JR, Raj D. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:502. [PMID: 38700594 DOI: 10.1007/s10661-024-12680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Water pollution is an inextricable problem that stems from natural and human-related factors. Unfortunately, with rapid industrialization, the problem has escalated to alarming levels. The pollutants that contribute to water pollution include heavy metals (HMs), chemicals, pesticides, pharmaceuticals, and other industrial byproducts. Numerous methods are used for treating HMs in wastewater, like ion exchange, membrane filtration, chemical precipitation, adsorption, and electrochemical treatment. But the remediation through the plant, i.e., phytoremediation is the most sustainable approach to remove the contaminants from wastewater. Aquatic plants illustrate the capacity to absorb excess pollutants including organic and inorganic compounds, HMs, and pharmaceutical residues present in agricultural, residential, and industrial discharges. The extensive exploitation of these hyperaccumulator plants can be attributed to their abundance, invasive mechanisms, potential for bioaccumulation, and biomass production. Post-phytoremediation, plant biomass can be toxic to both water bodies and soil. Therefore, the circular bioeconomy approach can be applied to reuse and repurpose the toxic plant biomass into different circular bioeconomy byproducts such as biochar, biogas, bioethanol, and biodiesel is essential. In this regard, the current review highlights the potential strategies for the phytoremediation of HMs in wastewater and various strategies to efficiently reuse metal-enriched biomass material and produce commercially valuable products. The implementation of circular bioeconomy practices can help overcome significant obstacles and build a new platform for an eco-friendlier lifestyle.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Jyoti Ranjan Mandal
- Electro-Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
3
|
Umeh CT, Nduka JK, Mogale R, Akpomie KG, Okoye NH. Acid-activated corn silk as a promising phytosorbent for uptake of Malachite green and Cd (II) ion from simulated wastewater: equilibrium, kinetic and thermodynamic studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1593-1610. [PMID: 38623998 DOI: 10.1080/15226514.2024.2339478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Malachite green (MG) dye and cadmium metal ion are toxic pollutants that should be removed from aqueous environment. The recent study aimed to examine the adsorption behavior of MG dye and Cd (II) from wastewater onto low-cost adsorbent prepared by activating corn silk with nitric acid (ACS) and characterized by SEM, FTIR, XRD, BET and TGA. The optimum MG and Cd (II) adsorption was observed at pH 7 and pH 9 and maximum uptake of both pollutants was at 0.5 g dosage, 60 mins contact time and 20 mg/L initial concentration. The retention of dye and metal ion by the studied adsorbent was best fit to Langmuir isotherm and Pseudo-second order kinetics. The maximum monolayer coverage capacity of ACS for MG dye and Cd (II) ion was 18.38 mg/g and 25.53 mg/g, respectively. Thermodynamic studies predicted a spontaneous reaction with exothermic process for MG dye whereas an endothermic and spontaneous process was confirmed for Cd ion based on estimated parameters. The adsorption mechanism of MG dye and Cd (II) uptake was by combination of electrostatic interaction, pore diffusion, ion exchange, pie-pie attraction, hydrogen bonding, and complexation. The adsorbed pollutants were effectively desorbed with significant regeneration efficiency after successive five cycles that proved the potential of low-cost biosorbent for selective sequestration of cationic dye and divalent metal ion from effluents.
Collapse
Affiliation(s)
- Chisom T Umeh
- Department of Chemistry, Nnamdi Azikiwe University, Awka, Anambra, Nigeria
| | | | - Refilwe Mogale
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Nkechi H Okoye
- Department of Chemistry, Nnamdi Azikiwe University, Awka, Anambra, Nigeria
| |
Collapse
|
4
|
Kumar A, Kumar V. Coconut Coir Derived Nanolignin for the Removal of Chromium (VI) from Aqueous Solution: Adsorption Characteristic and Mechanism. CHEMISTRY AFRICA 2024; 7:953-968. [DOI: 10.1007/s42250-023-00818-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/23/2023] [Indexed: 01/12/2025]
|
5
|
Deniz F, Tezel Ersanli E. An efficient biosorbent material for green remediation of contaminated water medium. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:1-10. [PMID: 37191258 DOI: 10.1080/15226514.2023.2191742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The discharge of large amounts of wastewater carrying various contaminants from many anthropogenic activities into the receiving water environment is a multidimensional issue negatively affecting the ecological system and natural balance in many ways. The removal of pollutants by the biologically-originated materials is an emerging area of interest due to profoundly their environmental friendliness, renewability, sustainability, readily availability, biodegradability, multiplicity, low (or no) economic cost, high affinity, capacity, and stability. In the present study, a popular ornamental plant, Pyracantha coccinea M. J. Roemer, was converted into a green sorbent material with the goal to effectively remove a widespread contaminant (synthetic dye, C. I. Basic Red 46) from synthetic wastewater. The physicochemical characteristics of the prepared biosorbent were determined by the instrumental analyses of FTIR and SEM. The batch experiments of various operational influence parameters were conducted to maximize the system efficiency. The wastewater remediation behavior by the material was investigated by the kinetics, thermodynamics, and isotherm experiments. The biosorbent had a non-uniform and rough surface architecture with a diversity of functional groups. The maximum remediation yield was achieved with the contact duration of 360 min, the pollutant load of 30 mg L-1, the pH of 8, and the biosorbent quantity of 10 mg (0.1 g L-1). The kinetics of the contaminant removal showed good agreement with the pseudo-second-order model. Thermodynamics study indicated that the treatment process was spontaneous and occurred by physisorption. Langmuir model fitted the isotherm data of the biosorption operation well and the maximum pollutant cleanup capacity of the material was determined to be 169.354 mg g-1. These outcomes showed that P. coccinea M. J. Roemer could be used as a promising material for low-cost and green treatment of wastewater.
Collapse
Affiliation(s)
- Fatih Deniz
- Environmental Protection Technologies Department, Vocational School of Bozova, University of Harran, Sanliurfa, Turkey
| | - Elif Tezel Ersanli
- Biology Department, Faculty of Arts and Science, University of Sinop, Sinop, Turkey
| |
Collapse
|
6
|
Recoverable cellulose composite adsorbents for anionic/cationic dyes removal. Int J Biol Macromol 2023; 238:124022. [PMID: 36921822 DOI: 10.1016/j.ijbiomac.2023.124022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
GO/HEC/PGDE/Fe3O4 materials were successfully fabricated using environmentally-friendly hydroxyethyl cellulose (HEC), poly(ethylene glycol) diglycidyl ether (PGDE), graphene oxide (GO) and magnetic Fe3O4. Systematic investigations were completed to explore the influences of GO content in GO/HEC/PGDE/Fe3O4 and adsorption conditions on the adsorptions of cationic dyes (methylene blue (MB), crystal violet (CV)) and anionic dye acid blue 25 (AB-25). The increase of GO content can remarkably improve the adsorption capacity of GO/HEC/PGDE/Fe3O4 for the dyes. The three kinetic, four isothermic and three thermodynamic models were investigated to reveal the adsorption behaviors of the dyes. The formation of HEC/PGDE/Fe3O4 and adsorption mechanisms of the dyes by GO/HEC/PGDE/Fe3O4 were suggested. The GO/HEC/PGDE/Fe3O4 endowed with easy-fabrication, eco-friendly feature, efficient adsorption capacity of anionic/cationic dyes, convenient separation and reusability has potential applications in wastewater purification industry.
Collapse
|
7
|
Agarwalla A, Mishra S, Mohanty K. Treatment and recycle of harvested microalgal effluent using powdered activated carbon for reducing water footprint and enhancing biofuel production under a biorefinery model. BIORESOURCE TECHNOLOGY 2022; 360:127598. [PMID: 35820557 DOI: 10.1016/j.biortech.2022.127598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In this study, the suitability of cultivating Monoraphidium sp. KMC4 was exhibited in different effluent based culture (EBC) media concentrations, the latter being treated with powdered activated carbon (PAC) with a loading of 5-50 mg L-1. The optimum EBC media treated with 30 mg L-1 PAC enhanced the biomass yield by 21.9% as compared to the untreated one (1.21 g L-1). A recyclability study performed in five batches resulted in an optimal growth up to three batches with an overall biomass yield of 4.21 g and a total water savings of 30%. Additionally, physico-chemical characterization and FAME profile of the biomass from the recyclability study validated feedstock's energy potential. Moreover, this study proposes a biorefinery model which could recover nutrient rich liquid effluent (3.1 million litres) and solid residue for various applications along with the generation of 5760 kg of biomass followed by 113 L d-1 biodiesel yield.
Collapse
Affiliation(s)
- Ankit Agarwalla
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sanjeev Mishra
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
8
|
Wongtawee W, Amornpitoksuk P, Randorn C, Rattana T, Suwanboon S. Photocatalytic activity under visible light illumination of organic dyes over g-C3N4/MgAl2O4 nanocomposite. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|