1
|
González-Portela RE, Romero-Villegas GI, Kapoore RV, Alammari ZM, Malibari RA, Shaikhi AA, Al Hafedh Y, Aljahdali AH, Banjar RE, Mhedhbi E, Filimban A, Padri M, Fuentes-Grünewald C. Cultivation of Limnospira maxima under extreme environmental conditions in Saudi Arabia: Salinity adaptation and scaling-up from laboratory culture to large-scale production. BIORESOURCE TECHNOLOGY 2024; 406:131089. [PMID: 38986884 DOI: 10.1016/j.biortech.2024.131089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Limnospira maxima has been adapted to grow in high salinity and in an economically alternative medium using industrial-grade fertilizers under harsh environmental conditions in Saudi Arabia. A sequence of scaling-up processes, from the laboratory to large-scale open raceways, was conducted along with gradual adaptation to environmental stress (salinity, light, temperature, pH). High biomass concentration at harvest point and areal productivity were achieved during the harsh summer season (1.122 g L-1 and 60.35 g m-2 day-1, respectively). The average protein content was found to be above 40 % of dry weight. Changes in the color and morphological appearance of the L. maxima culture were observed after direct exposure to sunlight in the outdoor raceways. These results demonstrate a successful and robust adaptation method for algal cultivation at outdoor large-scale in harsh environment (desert conditions) and also prove the feasibility of using hypersaline seawater (42 g kg-1) as an algal growth medium.
Collapse
Affiliation(s)
- Ricardo E González-Portela
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia.
| | - Gabriel I Romero-Villegas
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Rahul V Kapoore
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Zain M Alammari
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Raghdah A Malibari
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Ali Al Shaikhi
- Ministry of Environment, Water and Agriculture (MEWA), King Abdulaziz Rd., Riyadh 11195, Kingdom of Saudi Arabia
| | - Yousef Al Hafedh
- Ministry of Environment, Water and Agriculture (MEWA), King Abdulaziz Rd., Riyadh 11195, Kingdom of Saudi Arabia
| | - Abdulaziz H Aljahdali
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Rana E Banjar
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Emna Mhedhbi
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Akram Filimban
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Mohamad Padri
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Claudio Fuentes-Grünewald
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
2
|
Bhandari M, Kumar P, Bhatt P, Simsek H, Kumar R, Chaudhary A, Malik A, Prajapati SK. An integration of algae-mediated wastewater treatment and resource recovery through anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118159. [PMID: 37207460 DOI: 10.1016/j.jenvman.2023.118159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
Eutrophication is one of the major emerging challenges in aquatic environment. Industrial facilities, including food, textile, leather, and paper, generate a significant amount of wastewater during their manufacturing process. Discharge of nutrient-rich industrial effluent into aquatic systems causes eutrophication, eventually disturbs the aquatic system. On the other hand, algae provide a sustainable approach to treat wastewater, while the resultant biomass may be used to produce biofuel and other valuable products such as biofertilizers. This review aims to provide new insight into the application of algal bloom biomass for biogas and biofertilizer production. The literature review suggests that algae can treat all types of wastewater (high strength, low strength, and industrial). However, algal growth and remediation potential mainly depend on growth media composition and operation conditions such as light intensity, wavelength, light/dark cycle, temperature, pH, and mixing. Further, the open pond raceways are cost-effective compared to closed photobioreactors, thus commercially applied for biomass generation. Additionally, converting wastewater-grown algal biomass into methane-rich biogas through anaerobic digestion seems appealing. Environmental factors such as substrate, inoculum-to-substrate ratio, pH, temperature, organic loading rate, hydraulic retention time, and carbon/nitrogen ratio significantly impact the anaerobic digestion process and biogas production. Overall, further pilot-scale studies are required to warrant the real-world applicability of the closed-loop phycoremediation coupled biofuel production technology.
Collapse
Affiliation(s)
- Mamta Bhandari
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pushpendar Kumar
- Applied Microbiology Lab (AML), Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Ravindra Kumar
- Department of Physics, Janta Vedic Mahavidyalaya, Baraut (Baghpat), UP, 250611, India
| | - Aman Chaudhary
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Anushree Malik
- Applied Microbiology Lab (AML), Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
3
|
Villegas-Valencia M, González-Portela RE, de Freitas BB, Al Jahdali A, Romero-Villegas GI, Malibari R, Kapoore RV, Fuentes-Grünewald C, Lauersen KJ. Cultivation of the polyextremophile Cyanidioschyzon merolae 10D during summer conditions on the coast of the Red Sea and its adaptation to hypersaline sea water. Front Microbiol 2023; 14:1157151. [PMID: 37152750 PMCID: PMC10158843 DOI: 10.3389/fmicb.2023.1157151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
The west coast of the Arabian Peninsula borders the Red Sea, a water body which maintains high average temperatures and increased salinity compared to other seas or oceans. This geography has many resources which could be used to support algal biotechnology efforts in bio-resource circularity. However, summer conditions in this region may exceed the temperature tolerance of most currently cultivated microalgae. The Cyanidiophyceae are a class of polyextremophilic red algae that natively inhabit acidic hot springs. C. merolae 10D has recently emerged as an interesting model organism capable of high-cell density cultivation on pure CO2 with optimal growth at elevated temperatures and acidic pH. C. merolae biomass has an interesting macromolecular composition, is protein rich, and contains valuable bio-products like heat-stable phycocyanin, carotenoids, β-glucan, and starch. Here, photobioreactors were used to model C. merolae 10D growth performance in simulated environmental conditions of the mid-Red Sea coast across four seasons, it was then grown at various scales outdoors in Thuwal, Saudi Arabia during the Summer of 2022. We show that C. merolae 10D is amenable to cultivation with industrial-grade nutrient and CO2 inputs outdoors in this location and that its biomass is relatively constant in biochemical composition across culture conditions. We also show the adaptation of C. merolae 10D to high salinity levels of those found in Red Sea waters and conducted further modeled cultivations in nutrient enriched local sea water. It was determined that salt-water adapted C. merolae 10D could be cultivated with reduced nutrient inputs in local conditions. The results presented here indicate this may be a promising alternative species for algal bioprocesses in outdoor conditions in extreme coastal desert summer environments.
Collapse
Affiliation(s)
- Melany Villegas-Valencia
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ricardo E. González-Portela
- Development of Algal Biotechnology in Kingdom of Saudi Arabia (DAB-KSA) Project, Beacon Development, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Bárbara Bastos de Freitas
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdulaziz Al Jahdali
- Development of Algal Biotechnology in Kingdom of Saudi Arabia (DAB-KSA) Project, Beacon Development, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gabriel I. Romero-Villegas
- Development of Algal Biotechnology in Kingdom of Saudi Arabia (DAB-KSA) Project, Beacon Development, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Raghdah Malibari
- Development of Algal Biotechnology in Kingdom of Saudi Arabia (DAB-KSA) Project, Beacon Development, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Rahul Vijay Kapoore
- Development of Algal Biotechnology in Kingdom of Saudi Arabia (DAB-KSA) Project, Beacon Development, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Claudio Fuentes-Grünewald
- Development of Algal Biotechnology in Kingdom of Saudi Arabia (DAB-KSA) Project, Beacon Development, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kyle J. Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Zhang Y, Wang JH, Zhang JT, Chi ZY, Kong FT, Zhang Q. The long overlooked microalgal nitrous oxide emission: Characteristics, mechanisms, and influencing factors in microalgae-based wastewater treatment scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159153. [PMID: 36195148 DOI: 10.1016/j.scitotenv.2022.159153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Microalgae-based wastewater treatment is particularly advantageous in simultaneous CO2 sequestration and nutrients recovery, and has received increasing recognition and attention in the global context of synergistic pollutants and carbon reduction. However, the fact that microalgae themselves can generate the potent greenhouse gas nitrous oxide (N2O) has been long overlooked, most previous research mainly regarded microalgae as labile organic carbon source or oxygenic approach that interfere bacterial nitrification-denitrification and the concomitant N2O production. This study, therefore, summarized the amount and rate of N2O emission in microalgae-based systems, interpreted in-depth the multiple pathways that lead to NO formation as the key precursor of N2O, and the pathways that transform NO into N2O. Reduction of nitrite could take place in either the cytoplasm or the mitochondria to form NO by a series of enzymes, while the NO could be enzymatically reduced to N2O at the chloroplasts or the mitochondria respectively under light and dark conditions. The influences of abiotic factors on microalgal N2O emission were analyzed, including nitrogen types and concentrations that directly affect the nitrogen transformation routes, illumination and oxygen conditions that regulate the enzymatic activities related to N2O generation, and other factors that indirectly interfere N2O emission via NO regulation. The uncertainty of microalgae-based N2O emission in wastewater treatment scenarios were emphasized, which would be particularly impacted by the complex competition between microalgae and ammonia oxidizing bacteria or nitrite oxidizing bacteria over ammonium or inorganic carbon source. Future studies should put more efforts in improving the compatibility of N2O emission results expressions, and adopting consistent NO detection methods for N2O emission prediction. This review will provide much valuable information on the characteristics and mechanisms of microalgal N2O emission, and arouse more attention to the non-negligible N2O emission that may impair overall greenhouse gas reduction efficiency in microalgae-based wastewater treatment systems.
Collapse
Affiliation(s)
- Ying Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Jing-Tian Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| |
Collapse
|
5
|
Schipper K, Al Jabri HMSJ, Wijffels RH, Barbosa MJ. Realizing algae value chains in arid environments: an Arabian Peninsula perspective. Trends Biotechnol 2022; 41:750-759. [PMID: 36581482 DOI: 10.1016/j.tibtech.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 12/28/2022]
Abstract
Algae are a promising feedstock for the sustainable production of feed, fuels, and chemicals. Especially in arid regions such as the Arabian Peninsula, algae could play a significant role in enhancing food security, economic diversification, and decarbonization. Within this context, the regional potential of algae commercialization is discussed, exploring opportunities and challenges across technical, societal, and political aspects. Climate, availability of process inputs, and funding opportunities are identified as essential strengths that increase the global competitiveness of regional algae production. Implementation challenges include climate change, securing human resources, and the vital transitioning from research to commercial scales. With balanced management, however, the region's efforts could be the push that is necessary for algal technologies to take off globally.
Collapse
Affiliation(s)
- Kira Schipper
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar.
| | - Hareb Mohammed S J Al Jabri
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - René H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands; Nord University, Faculty of Biosciences and Aquaculture, N-8049, Bodø, Norway
| | - Maria J Barbosa
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|