1
|
Pentari C, Katsimpouras C, Haon M, Berrin JG, Zerva A, Topakas E. Exploring the synergy between fungal CE15 glucuronoyl esterases and xylanases for lignocellulose saccharification. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:38. [PMID: 40140928 PMCID: PMC11948903 DOI: 10.1186/s13068-025-02639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Lignin-carbohydrate complexes in lignocellulosic biomass act as a barrier to its biodegradation and biotechnological exploitation. Enzymatic dissociation between lignin and hemicellulose is a key process that allows the efficient bioconversion of both polymers. Glucuronoyl esterases of the Carbohydrate Esterase 15 family target the ester linkages between the glucuronic acid of xylan and lignin moieties, assisting enzymatic biodegradation of lignocellulose. RESULTS In this study, two CE15 glucuronoyl esterases from the white-rot fungi Artolenzites elegans and Trametes ljubarskyi were heterologously expressed in Pichia pastoris and biochemically characterized on the model substrate D-glucuronic acid ester with cinnamyl alcohol and a variety of pretreated lignocellulosic biomasses. The pretreatment method was shown to be a determining factor in revealing both the activity of the esterases on lignocellulose and their synergistic relationships with other hemicellulases. AeGE15 and TlGE15 demonstrated activity on pretreated biomass with high hemicellulose and lignin content, increasing saccharification by 57 ± 1 μM and 61 ± 3 μM of xylose equivalents, respectively. Furthermore, the synergy between these CE15 esterases and three xylanases from distinct glycoside hydrolase families (GH10, GH11 and GH30) was investigated on pretreated lignocellulosic samples, highlighting beneficial enzymatic interplays. Pretreated birchwood degradation by AnXyn11 was increased from 6% to approximately 10% by the esterases, based on xylose equivalents of unsubstituted xylooligomers. The GEs also promoted the glucuronoxylanase specificity of TtXyn30A, leading up to three-times higher release in aldouronic acids. Finally, a synergistic effect between AeGE15 and TmXyn10 was observed on pretreated corn bran, increasing xylose and xylotriose release by 27 ± 8% and 55 ± 15%, respectively. CONCLUSIONS Both CE15 esterases promoted biomass saccharification by the xylanases, while there was a prominent effect on the GH30 glucuronoxylanase regarding the release of aldouronic acids. Overall, this study shed some light on the role of CE15 glucuronoyl esterases in the enzymatic biodegradation of plant biomass, particularly its (arabino)glucuronoxylan component, during cooperative activity with xylanases.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15772, Athens, Greece
| | - Constantinos Katsimpouras
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139 MA, USA
| | - Mireille Haon
- INRAE, Aix Marseille Univ., BBF, Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ., BBF, Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Anastasia Zerva
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15772, Athens, Greece.
| |
Collapse
|
2
|
Miran M, Salami M, Yarmand MS, Ferreira-Lazarte A, Ariaeenejad S, Montilla A, Moreno FJ. Arabinoxylo-oligosaccharides production from unexploited agro-industrial sesame (Sesamum indicum L.) hulls waste. Carbohydr Polym 2024; 342:122399. [PMID: 39048235 DOI: 10.1016/j.carbpol.2024.122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
This work demonstrates that sesame (Sesamum indicum L.) hull, an unexploited food industrial waste, can be used as an efficient source for the extraction of hemicellulose and/or pectin polysaccharides to further obtain functional oligosaccharides. Different polysaccharides extraction methods were surveyed including alkaline and several enzymatic treatments. Based on the enzymatic release of xylose, arabinose, glucose, and galacturonic acid from sesame hull by using different enzymes, Celluclast®1.5 L, Pectinex®Ultra SP-L, and a combination of them were selected for the enzymatic extraction of polysaccharides at 50 °C, pH 5 up to 24 h. Once the polysaccharides were extracted, Ultraflo®L was selected to produce arabinoxylo-oligosaccharides (AXOS) at 40 °C up to 24 h. Apart from oligosaccharides production from extracted polysaccharides, alternative approaches for obtaining oligosaccharides were also explored. These were based on the analysis of the supernatants resulting from the polysaccharide extraction, alongside a sequential hydrolysis performed with Celluclast®1.5 L and Ultraflo®L of the starting raw sesame hull. The different fractions obtained were comprehensively characterized by determining low molecular weight carbohydrates and monomeric compositions, average Mw and dispersity, and oligosaccharide structure by MALDI-TOF-MS. The results indicated that sesame hull can be a useful source for polysaccharides extraction (pectin and hemicellulose) and derived oligosaccharides, especially AXOS.
Collapse
Affiliation(s)
- Mona Miran
- Department of Food Science, Technology, and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran.
| | - Maryam Salami
- Department of Food Science, Technology, and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran; Functional Food Research Core, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Mohammad Saeid Yarmand
- Department of Food Science, Technology, and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran.
| | - Alvaro Ferreira-Lazarte
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Campus de la Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Shohreh Ariaeenejad
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREO), Karaj, Iran
| | - Antonia Montilla
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Campus de la Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Campus de la Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
3
|
Mamtimin T, Ouyang X, Wu WM, Zhou T, Hou X, Khan A, Liu P, Zhao YL, Tang H, Criddle CS, Han H, Li X. Novel Feruloyl Esterase for the Degradation of Polyethylene Terephthalate (PET) Screened from the Gut Microbiome of Plastic-Degrading Mealworms ( Tenebrio Molitor Larvae). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17717-17731. [PMID: 39315846 DOI: 10.1021/acs.est.4c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mealworms (Tenebrio molitor) larvae can degrade both plastics and lignocellulose through synergistic biological activities of their gut microbiota because they share similarities in chemical and physical properties. Here, a total of 428 genes encoding lignocellulose-degrading enzymes were screened from the gut microbiome of T. molitor larvae to identify poly(ethylene terephthalate) (PET)-degrading activities. Five genes were successfully expressed in E. coli, among which a feruloyl esterase-like enzyme named TmFae-PETase demonstrated the highest PET degradation activity, converting PET into MHET (0.7 mgMHETeq ·h-1·mgenzyme-1) and TPA (0.2 mgTPAeq ·h-1·mgenzyme-1) at 50 °C. TmFae-PETase showed a preference for the hydrolysis of ferulic acid methyl ester (MFA) in the presence of both PET and MFA. Site-directed mutagenesis and molecular dynamics simulations of TmFae-PETase revealed similar catalytic mechanisms for both PET and MFA. TmFae-PETase effectively depolymerized commercial PET, making it a promising candidate for application. Additionally, the known PET hydrolases IsPETase, FsC, and LCC also hydrolyzed MFA, indicating a potential origin of PET hydrolytic activity from its lignocellulosic-degrading abilities. This study provides an innovative strategy for screening PET-degrading enzymes identified from lignocellulose degradation-related enzymes within the gut microbiome of plastic-degrading mealworms. This discovery expands the existing pool of plastic-degrading enzymes available for resource recovery and bioremediation applications.
Collapse
Affiliation(s)
- Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305, United States
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoxiao Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305, United States
| | - Huawen Han
- Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Norlander S, Jasilionis A, Allahgholi L, Wennerberg C, Grey C, Adlercreutz P, Karlsson EN. Inter domain linker region affects properties of CBM6 in GH5_34 arabinoxylanases and alters oligosaccharide product profile. Glycobiology 2024; 34:cwae048. [PMID: 38982733 PMCID: PMC11246198 DOI: 10.1093/glycob/cwae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Understanding the relation between enzyme domain structure and catalytic activity is crucial for optimal engineering of novel enzymes for lignocellulose bioconversion. Xylanases with varying specificities are commonly used to valorise the hemicellulose arabinoxylan (AX), yet characterization of specific arabinoxylanases remain limited. Two homologous GH5_34 arabinoxylanases, HhXyn5A and CtXyn5A, in which the two domains are connected by a 40-residue linker, exhibit distinct activity on AX, yielding different reaction product patterns, despite high sequence identity, conserved active sites and similar domain composition. In this study, the carbohydrate binding module 6 (CBM6), or the inter domain linker together with CBM6, were swapped to investigate their influence on hydrolytic activity and oligosaccharide product pattern on cereal AXs. The variants, with only CBM6 swapped, displayed reduced activity on commercial wheat and rye AX, as well as on extracted oat fibre, compared to the original enzymes. Additionally, exchange of both linker and CBM6 resulted in a reduced ratio of enzyme produced in soluble form in Escherichia coli cultivations, causing loss of activity of both HhXyn5A and CtXyn5A variants. Analysis of oligosaccharide product patterns applying HPAEC-PAD revealed a decreased number of reaction products for CtXyn5A with swapped CBM6, which resembled the product pattern of HhXyn5A. These findings emphasize the importance of the CBM6 interactions with the linker and the catalytic domain for enzyme activity and specificity, and underlines the role of the linker in enzyme structure organisation and product formation, where alterations in linker interactions with the catalytic and/or CBM6 domains, influence enzyme-substrate association and specificity.
Collapse
Affiliation(s)
- Siri Norlander
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | - Andrius Jasilionis
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | - Leila Allahgholi
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | - Christina Wennerberg
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | - Carl Grey
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | - Patrick Adlercreutz
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | - Eva Nordberg Karlsson
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden
| |
Collapse
|
5
|
Mohammadi M, Norlander S, Hedström M, Adlercreutz P, Grey C. Xylanases and high-degree wet milling improve soluble dietary fibre content in liquid oat base. Food Chem 2024; 442:138619. [PMID: 38306765 DOI: 10.1016/j.foodchem.2024.138619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
The growth of plant-based food and drink substitutes has led to increased interest in oat-based milk substitute as a dairy milk alternative. Conventional liquid oat base (LOB) production results in a fibre-rich insoluble by-product and loss of valuable macronutrients. This study investigates the use of xylanase enzymes to release insoluble arabinoxylan (AX) fibre and employs different degrees of milling in the LOB manufacturing process, with the aim to reduce insoluble waste and simultaneously increase soluble dietary fibre in oat-based milk substitutes. The combination of decreased mill gap space from 1 to 0.05 mm and addition of GH10 xylanase, resulted in a homogenous LOB product and solubilization of all available AX. Potential prebiotic arabinoxylooligosaccharides of DP3-7 from GH10 hydrolysis were identified using HPAEC-PAD and MS analysis. These findings demonstrate the value of utilizing xylanases and fine-milling in LOB manufacturing, offering a sustainable approach to maximize health benefits of oat-based beverages.
Collapse
Affiliation(s)
- Milad Mohammadi
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Siri Norlander
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
| | - Martin Hedström
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Patrick Adlercreutz
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Carl Grey
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
6
|
Zhang Y, Ye Q, Liu B, Feng Z, Zhang X, Luo M, Yang L. Fermenting Distiller's Grains by the Domesticated Microbial Consortium To Release Ferulic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 38598779 PMCID: PMC11046480 DOI: 10.1021/acs.jafc.3c08067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
The microbial consortium FA12 that can release ferulic acid (FA) by fermenting distiller's grains was screened from Daqu. Taibaiella, Comamonadaceae, and Ochrobacum were highly abundant in FA12 by 16S rRNA gene sequencing. In the process of long-term acclimation with distiller's grains as a medium, the biomass of FA12 remained stable, and the pH value of fermentation liquid was also relatively stable. Meanwhile, the activities of cellulase, xylanase, and feruloyl esterase secreted by FA12 were stable in the ranges of 0.2350-0.4470, 0.1917-0.3078, and 0.1103-0.1595 U/mL, respectively, and the release of FA could reach 133.77 μg/g. It is proven that the microbial consortium has good genetic stability. In addition, the structural changes of lignocellulose in distiller's grains before and after fermentation were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR), and the changes of distiller's grains weight and lignocellulose content before and after fermentation were also detected. These results all confirmed that FA12 had the function of degrading distiller's grains. In this study, we explored a method to use microbial communities to release FA from distiller's grains and degrade lignocellulose in the waste, which opened up a new way for the application of the high value of lost waste.
Collapse
Affiliation(s)
- Yao Zhang
- College
of Bioengineering, Sichuan University of
Science & Engineering, Yinbin 643000, China
| | - Qiang Ye
- College
of Bioengineering, Sichuan University of
Science & Engineering, Yinbin 643000, China
| | - Bo Liu
- College
of Bioengineering, Sichuan University of
Science & Engineering, Yinbin 643000, China
| | - Zhiping Feng
- College
of Bioengineering, Sichuan University of
Science & Engineering, Yinbin 643000, China
| | - Xian Zhang
- College
of Bioengineering, Sichuan University of
Science & Engineering, Yinbin 643000, China
| | - Mingyou Luo
- Xufu
Distillery Co. Ltd., Yibin 644000, China
| | - Lijuan Yang
- College
of Bioengineering, Sichuan University of
Science & Engineering, Yinbin 643000, China
- Liquor
Making Bio-Technology & Application of Key Laboratory of Sichuan
Province, Sichuan University of Science
& Engineering, Yibin 643000, China
| |
Collapse
|
7
|
Chacόn M, Percival E, Bugg TDH, Dixon N. Engineered co-culture for consolidated production of phenylpropanoids directly from aromatic-rich biomass. BIORESOURCE TECHNOLOGY 2024; 391:129935. [PMID: 37923228 DOI: 10.1016/j.biortech.2023.129935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Consolidated bioprocesses for the in situ hydrolysis and conversion of biomass feedstocks into value-added products offers great potential for both process and cost reduction. However, to date few consolidated bioprocesses have been developed that target aromatic rich feedstock fractions. Reported here is the development of synthetic co-cultivation for the consolidated hydrolysis and valorisation of corncob hydroxycinnamic acids. Biomass hydrolysis was achieved via a secretion module developed in B. subtilis using a genetically encoded biosensor-actuator to secrete hydrolytic enzymes. Conversion was achieved via a biotransformation module developed in E. coli using a suite of plug-and-play encoded enzymes to convert the released hydroxycinnamic acids into high-value phenylpropanoid target compounds. Finally, employing cellulolytic pre-treatment, extractive fermentation and in situ product recovery multiple aromatic products, coniferol and chavicol, were isolated from the same process in high purity.
Collapse
Affiliation(s)
- Micaela Chacόn
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester M1 7DN, UK
| | - Ellen Percival
- Department of Chemistry, University of Warwick, Coventry CV4 7AK, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AK, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
8
|
Phienluphon A, Kondo K, Mikami B, Nagata T, Katahira M. Structural insights into the molecular mechanisms of substrate recognition and hydrolysis by feruloyl esterase from Aspergillus sydowii. Int J Biol Macromol 2023; 253:127188. [PMID: 37783244 DOI: 10.1016/j.ijbiomac.2023.127188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The depolymerization of lignocellulosic biomass is facilitated by feruloyl esterases (FAEs), which hydrolyze ester bonds between lignin and polysaccharides. Fungal FAEs belonging to subfamily (SF) 6 release precursors such as ferulic acid derivatives, attractive for biochemical production. Among these, Aspergillus sydowii FAE (AsFaeE), an SF6 FAE, exhibits remarkable activity across various substrates. In this study, we conducted X-ray crystallography and kinetic analysis to unravel the molecular mechanisms governing substrate recognition and catalysis by AsFaeE. AsFaeE exhibits a typical α/β-hydrolase fold, characterized by a catalytic triad of serine, aspartate, and histidine. Comparative analysis of substrate-free, ferulic acid-bound, and sinapic acid-bound forms of AsFaeE suggests a conformational change in the loop covering the substrate-binding pocket upon binding. Notably, Pro158 and Phe159 within this loop cover the phenolic part of the substrate, forming three layers of planar rings. Our structure-based functional mutagenesis clarifies the roles of the residues involved in substrate binding and catalytic activity. Furthermore, distinct substrate-binding mechanisms between AsFaeE and other studied FAEs are identified. This investigation offers the initial structural insights into substrate recognition by SF6 FAEs, equipping us with structural knowledge that might facilitate the design of FAE variants capable of efficiently processing a wider range of substrate sizes.
Collapse
Affiliation(s)
- Apisan Phienluphon
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Keiko Kondo
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Bunzo Mikami
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
9
|
Du G, Wang Y, Zhang Y, Yu H, Liu S, Ma X, Cao H, Wei X, Wen B, Li Z, Fan S, Zhou H, Xin F. Structural insights into the oligomeric effects on catalytic activity of a decameric feruloyl esterase and its application in ferulic acid production. Int J Biol Macromol 2023; 253:126540. [PMID: 37634773 DOI: 10.1016/j.ijbiomac.2023.126540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Oligomeric feruloyl esterase (FAE) has great application prospect in industry due to its potentially high stability and fine-tuned activity. However, the relationship between catalytic capability and oligomeric structure remains undetermined. Here we identified and characterized a novel, cold-adapted FAE (BtFae) derived from Bacteroides thetaiotaomicron. Structural studies unraveled that BtFae adopts a barrel-like decameric architecture unique in esterase families. By disrupting the interface, the monomeric variant exhibited significantly reduced catalytic activity and stability toward methyl ferulate, potentially due to its impact on the flexibility of the catalytic triad. Additionally, our results also showed that the monomerization of BtFae severely decreased the ferulic acid release from de-starched wheat bran and insoluble wheat arabinoxylan by 75 % and 80 %, respectively. Collectively, this study revealed novel connections between oligomerization and FAE catalytic function, which will benefit for further protein engineering of FAEs at the quaternary structure level for improved industrial applications.
Collapse
Affiliation(s)
- Guoming Du
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haiyan Yu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Xiaochen Ma
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao Cao
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Shilong Fan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China.
| |
Collapse
|
10
|
Zhao W, Liu M, Liu K, Liu H, Liu X, Liu J. An Enzymatic Strategy for the Selective Methylation of High-Value-Added Tetrahydroprotoberberine Alkaloids. Int J Mol Sci 2023; 24:15214. [PMID: 37894895 PMCID: PMC10607743 DOI: 10.3390/ijms242015214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Tetrahydroprotoberberines (THPBs) are plant-specific alkaloids with significant medicinal value. They are present in trace amounts in plants and are difficult to chemically synthesize due to stereoselectivity and an unfavorable environment. In this study, a selective methylation strategy was developed for the biocatalysis of seven high-value-added THPB compounds using 4'-O-methyltransferase (Cj4'OMT), norcoclaurine 6-O-methyltransferase (Cj6OMT), and (S)-scoulerine 9-O-methyltransferase (SiSOMT and PsSOMT) in engineered E. coli. The methyltransferases Cj4'OMT, Cj6OMT, PsSOMT, and SiSOMT were expressed heterologously in E. coli. Compound 1 (10-methoxy-2,3,9-tetrahydroxyberbine) was synthesized using the recombinant E. coli strain Cj4'OMT and the substrate 2,3,9,10-tetrahydroxyberbine. Compound 2 (9-methoxy-2,3,10-tetrahydroxyberbine) was produced in the recombinant Escherichia coli (E. coli) strain PsSOMT, and compounds 2 and 3 (discretamine) were produced in the recombinant E. coli strain SiSOMT. Compounds 4 (9,10-methoxy-2,3-tetrahydroxyberbine) and 5 (corypalmine) were obtained by co-culturing the recombinant strains Cj4'OMT and SiSOMT with substrate. Compounds 6 (scoulerine) and 7 (isoscoulerine) were produced by co-culturing the substrate with the recombinant strains Cj4'OMT and Cj6OMT. To increase the yield of novel compound 2, the flask culture conditions of the engineered SiSOMT strain were optimized, resulting in the production of 165.74 mg/L of this compound. This study thus presents an enzymatic approach to the synthesis of high-value-added THPBs with minimum environmental wastage.
Collapse
Affiliation(s)
- Wanli Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Manyu Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Kemeng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Hanqing Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Xiufeng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jihua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
11
|
Bao C, Liu Y, Li F, Cao H, Dong B, Cao Y. Expression and Characterization of Laccase Lac1 from Coriolopsis trogii Strain Mafic-2001 in Pichia pastoris and Its Degradation of Lignin. Appl Biochem Biotechnol 2023; 195:6150-6167. [PMID: 36847985 DOI: 10.1007/s12010-023-04390-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
The laccase gene (Lac1) was cloned from Coriolopsis trogii strain Mafic-2001. Full-length sequence of Lac1 containing 11 exons and 10 introns is composed of 2140 nucleotides (nts). mRNA of Lac1 encoded for a protein of 517 aa. Nucleotide sequence of the laccase was optimized and expressed in Pichia pastoris X-33. SDS-PAGE analysis showed that the molecular weight of the purified recombinant laccase rLac1 was about 70 kDa. The optimum temperature and pH of rLac1 were 40 ℃ and 3.0, respectively. rLac1 showed high residual activity (90%) in the solutions after 1 h incubation at the pH ranging from 2.5 to 8.0. rLac1 maintained over 60% of laccase activity at the temperatures ranging from 20 to 60 °C, and kept higher than 50% of its activity at 40 °C for 2 h. The activity of rLac1 was promoted by Cu2+ and inhibited by Fe2+. Under optimal conditions, lignin degradation rates of rLac1 on the substrates of rice straw, corn stover, and palm kernel cake were 50.24%, 55.49%, and 24.43% (the lignin contents of substrates untreated with rLac1 were 100%), respectively. Treated with rLac1, the structures of agricultural residues (rice straw, corn stover, and palm kernel cake) were obviously loosened which was reflected by the analysis of scanning electron microscopy and Fourier transform infrared spectroscopy. Based on the specific activity of rLac1 on the degradation of lignin, rLac1 from Coriolopsis trogii strain Mafic-2001 has the potential for in-depth utilization of agricultural residues.
Collapse
Affiliation(s)
- Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feiyu Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Heng Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
12
|
Wang X, Chen P, Liu Z, Liu Z, Chen L, Li H, Qu J. Purification and characterization of an alkali-organic solvent-stable laccase with dye decolorization capacity from newly isolated Lysinibacillus fusiformis W11. Braz J Microbiol 2023; 54:1935-1942. [PMID: 37581711 PMCID: PMC10484895 DOI: 10.1007/s42770-023-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 08/16/2023] Open
Abstract
A new Lysinibacillus fusiformis strain with abundant laccase activity was isolated from soil under forest rotted leaf and identified as L. fusiformis W11 based on its 16S rRNA gene sequence and physiological characteristics. The laccase LfuLac was purified and characterized. The optimum temperature and pH of LfuLac on guaiacol were 45 °C and pH 9, respectively. LfuLac kept 78%, 88%, 92%, 74%, and 47% of activity at pH 7-11, respectively, suggesting the alkali resistance of the enzyme. The effects of various metal ions on LfuLac showed that Cu2+, Mg2+, and Na+ were beneficial to laccase activity and 10 mM Cu2+ increased the activity of LfuLac to 216%. LfuLac showed about 90% activity at 5% organic solvents and more than 60% activity at 20%, indicating its resistance to organic solvents. In addition, LfuLac decolorized different kinds of dyes. This study enriched our knowledge about laccase from L. fusiformis W11 and its potential industrial applications.
Collapse
Affiliation(s)
- Xifeng Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Pengxiao Chen
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, 450001, China
| | - Zhi Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Zhihua Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Liping Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianhang Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
13
|
Zhou Y, Tian Y, Beltrame G, Laaksonen O, Yang B. Ultrasonication-assisted enzymatic bioprocessing as a green method for valorizing oat hulls. Food Chem 2023; 426:136658. [PMID: 37354577 DOI: 10.1016/j.foodchem.2023.136658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Ultrasonication-assisted enzymatic treatments using Viscozyme®, Alcalase®, and feruloyl esterase were applied to recover proteins, avenanthramides, phenolic acids, free sugars, and organic acids from oat hulls (OH). The profiles of the chemical compounds in OH were markedly influenced by the nature of enzymes, ultrasonication frequency, and processing time. A significant increase in the contents of proteins and phenolic acids was observed in the liquid fraction of all enzymatic treatments, which was 2-19 folds higher than those detected in untreated OH. In contrast, avenanthramides were mostly degraded during enzyme hydrolyses. The highest content of proteins (68.9 g/100 g DM) was found in the liquid fraction after the feruloyl esterase treatment assisted with 90 min of ultrasonication at 25 kHz. This fraction also contained 0.07% phenolic acids, 14.1% free sugars, and 1.8% organic acids, which can be potentially used as the ingredient of novel food products.
Collapse
Affiliation(s)
- Ying Zhou
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Ye Tian
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Gabriele Beltrame
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Oskar Laaksonen
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland; Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
14
|
Schmitz E, Leontakianakou S, Adlercreutz P, Nordberg Karlsson E, Linares-Pastén JA. Novel Function of CtXyn5A from Acetivibrio thermocellus: Dual Arabinoxylanase and Feruloyl Esterase Activity in the Same Active Site. Chembiochem 2023; 24:e202200667. [PMID: 36449982 PMCID: PMC10107809 DOI: 10.1002/cbic.202200667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
Enzymes' uncharacterised side activities can have significant effects on reaction products and yields. Hence, their identification and characterisation are crucial for the development of successful reaction systems. Here, we report the presence of feruloyl esterase activity in CtXyn5A from Acetivibrio thermocellus, besides its well-known arabinoxylanase activity, for the first time. Activity analysis of enzyme variants mutated in the catalytic nucleophile, Glu279, confirmed removal of all activity for E279A and E279L, and increased esterase activity while removing xylanase activity for E279S, thus allowing the proposal that both reaction types are catalysed in the same active site in two subsequential steps. The ferulic acid substituent is cleaved off first, followed by hydrolysis of the xylan backbone. The esterase activity on complex carbohydrates was found to be higher than that of a designated ferulic acid esterase (E-FAERU). Therefore, we conclude that the enzyme exhibits a dual function rather than an esterase side activity.
Collapse
Affiliation(s)
- Eva Schmitz
- Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | - Savvina Leontakianakou
- Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | - Patrick Adlercreutz
- Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | - Eva Nordberg Karlsson
- Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | | |
Collapse
|
15
|
Rabelo SC, Nakasu PYS, Scopel E, Araújo MF, Cardoso LH, Costa ACD. Organosolv pretreatment for biorefineries: Current status, perspectives, and challenges. BIORESOURCE TECHNOLOGY 2023; 369:128331. [PMID: 36403910 DOI: 10.1016/j.biortech.2022.128331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Biorefineries integrate processes for the sustainable conversion of biomass into chemicals, materials, and bioenergy so that resources are optimized and effluents are minimized. Despite the vast potential of lignocellulosic biorefineries, their success depends heavily on effective, economically viable, and sustainable biomass fractionation. Although efficient, organosolv pretreatment still faces challenges that must be overcome for its widespread utilization, mainly related to solvent type and recycling, robustness regarding biomass type and integration of hemicellulose recovery and use. This review shows the recent advances and state-of-the-art of organosolv pretreatment, discussing the advances, such as the use of biobased solvents, whilst also shedding light on the perspectives of using the streams - cellulose, hemicellulose, and lignin - to produce biofuels and products of high added value. In addition, it presents an overview of the existing industrial implementations of organosolv processes and, lastly, shows the main scientific and industrial challenges and opportunities for this process.
Collapse
Affiliation(s)
- Sarita Cândida Rabelo
- School of Agriculture, São Paulo State University (Unesp), Botucatu Campus, Botucatu, São Paulo, Brazil.
| | | | - Eupídio Scopel
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | | | - Luiz Henrique Cardoso
- School of Agriculture, São Paulo State University (Unesp), Botucatu Campus, Botucatu, São Paulo, Brazil; Institute of Biosciences, São Paulo State University (Unesp), Botucatu Campus, Botucatu, São Paulo, Brazil
| | - Aline Carvalho da Costa
- Chemical Engineering School in State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| |
Collapse
|
16
|
Ma J, Ma Y, Li Y, Sun Z, Sun X, Padmakumar V, Cheng Y, Zhu W. Characterization of feruloyl esterases from Pecoramyces sp. F1 and the synergistic effect in biomass degradation. World J Microbiol Biotechnol 2022; 39:17. [PMID: 36409385 DOI: 10.1007/s11274-022-03466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
Feruloyl esterase (FAE; EC 3.1.1.73) cleaves the ester bond between ferulic acid (FA) and sugar, to assist the release of FAs and degradation of plant cell walls. In this study, two FAEs (Fae13961 and Fae16537) from the anaerobic fungus Pecoramyces sp. F1 were heterologously expressed in Pichia pastoris (P. pastoris). Compared with Fae16537, Fae13961 had higher catalytic efficiency. The optimum temperature and pH of both the FAEs were 45 ℃ and 7.0, respectively. They showed good stability-Fae16537 retained up to 80% activity after incubation at 37 ℃ for 24 h. The FAEs activity was enhanced by Ca2+ and reduced by Zn2+, Mn2+, Fe2+ and Fe3+. Additionally, the effect of FAEs on the hydrolytic efficiency of xylanase and cellulase was also determined. The FAE Fae13961 had synergistic effect with xylanase and it promoted the degradation of xylan substrates by xylanase, but it did not affect the degradation of cellulose substrates by cellulase. When Fae13961 was added in a mixture of xylanase and cellulase to degrade complex agricultural biomass, it significantly enhanced the mixture's ability to disintegrate complex substrates. These FAEs could serve as superior auxiliary enzymes for other lignocellulosic enzymes in the process of degradation of agricultural residues for industrial applications.
Collapse
Affiliation(s)
- Jing Ma
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuping Ma
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoni Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
17
|
Man F, Xing H, Wang H, Wang J, Lu R. Engineered small extracellular vesicles as a versatile platform to efficiently load ferulic acid via an “esterase-responsive active loading” strategy. Front Bioeng Biotechnol 2022; 10:1043130. [DOI: 10.3389/fbioe.2022.1043130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
As nano-drug carriers, small extracellular vesicles (sEVs) have shown unique advantages, but their drug loading and encapsulation efficiency are far from being satisfied, especially for the loading of hydrophilic small-molecule drugs. Inspired by the strategies of active loading of liposomal nanomedicines, pre-drug design and immobilization enzyme, here we developed a new platform, named “Esterase-responsive Active Loading” (EAL), for the efficient and stable drug encapsulation of sEVs. Widely used ferulic acid ester derivatives were chosen as prodrugs based on the EAL of engineered sEVs to establish a continuous transmembrane ion gradient for achieving efficient loading of active molecule ferulic acid into sEVs. The EAL showed that the drug loading and encapsulation efficiency were around 6-fold and 5-fold higher than passive loading, respectively. Moreover, characterization by nano-flow cytometry and Malvern particle size analyzer showed that differential ultracentrifugation combined with multiple types of membrane filtration methods can achieve large-scale and high-quality production of sEVs. Finally, extracellular and intracellular assessments further confirmed the superior performance of the EAL-prepared sEVs-loaded ferulic acid preparation in terms of slow release and low toxicity. Taken together, these findings will provide an instructive insight into the development of sEV-based delivery systems.
Collapse
|
18
|
Effects of Solid-State Fermentation Pretreatment with Single or Dual Culture White Rot Fungi on White Tea Residue Nutrients and In Vitro Rumen Fermentation Parameters. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fermentation of agricultural by-products by white rot fungi is a research hotspot in the development of ruminant feed resources. The aim of this study was to investigate the potential of the nutritional value and rumen fermentation properties of white tea residue fermented at different times, using single and dual culture white rot fungal species. Phanerochaete chrysosporium, Pleurotus ostreatus, and Phanerochaete chrysosporium + Pleurotus ostreatus (dual culture) solid-state fermented white tea residue was used for 4 weeks, respectively. The crude protein content increased significantly in all treatment groups after 4 weeks. Total extractable tannin content was significantly decreased in all treatment groups (p < 0.01). P. chrysosporium and dual culture significantly reduced lignin content at 1 week. The content of NH3-N increased in each treatment group (p < 0.05). P. chrysosporium treatment can reduce the ratio of acetic to propionic and improve digestibility. Solid state fermentation of white tea residue for 1 week using P. chrysosporium was the most desirable.
Collapse
|
19
|
Liu Y, Luo G, Ngo HH, Zhang S. New approach of bioprocessing towards lignin biodegradation. BIORESOURCE TECHNOLOGY 2022; 361:127730. [PMID: 35932944 DOI: 10.1016/j.biortech.2022.127730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Bio-utilization of lignocellulosic biomass is of huge significance as it can directly replace petroleum resources by producing liquid fuels and organic chemical products in a more sustainable way. However, studies on developing lignin-degrading microbial resources are still very few, which affects on establishing a consolidated bioprocessing of lignocellulosic resource. The main aim of this work is to discover thermostable laccases for lignin thermo-biodegradation by metagenome-mining and biochemical characterization. Results indicate that 124 putative thermostable laccase genes were identified from generated metagenomes. Significantly, 3 rationally selected proteins showed actual activity and structural stability at temperatures up to 60 °C and pH values as low as 4.87. These active recombinant enzymes verify a practical advance in the functional prediction of target proteins, and simultaneous sequence-to-function relationships in this metagenome. In short, the identified thermostable laccase genes in this work could expand range of lignin biocatalysts and contribute to build an efficient lignin biorefinery.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Huu Hao Ngo
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
20
|
Liu X, Jiang Y, Liu H, Yuan H, Huang D, Wang T. Research progress and biotechnological applications of feruloyl esterases. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Xuejun Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| |
Collapse
|
21
|
Comparison of the Biochemical Properties and Roles in the Xyloglucan-Rich Biomass Degradation of a GH74 Xyloglucanase and Its CBM-Deleted Variant from Thielavia terrestris. Int J Mol Sci 2022; 23:ijms23095276. [PMID: 35563667 PMCID: PMC9103125 DOI: 10.3390/ijms23095276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Xyloglucan is closely associated with cellulose and still retained with some modification in pretreated lignocellulose; however, its influence on lignocellulose biodegradation is less understood. TtGH74 from Thielavia terrestris displayed much higher catalytic activity than previously characterized fungal GH74 xyloglucanases. The carbohydrate-binding module 1 (CBM1) deleted variant (TtGH74ΔCBM) had the same optimum temperature and pH but an elevated thermostability. TtGH74 displayed a high binding affinity on xyloglucan and cellulose, while TtGH74ΔCBM completely lost the adsorption capability on cellulose. Their hydrolysis action alone or in combination with other glycoside hydrolases on the free xyloglucan, xyloglucan-coated phosphoric acid-swollen cellulose or pretreated corn bran and apple pomace was compared. CBM1 might not be essential for the hydrolysis of free xyloglucan but still effective for the associated xyloglucan to an extent. TtGH74 alone or synergistically acting with the CBH1/EG1 mixture was more effective in the hydrolysis of xyloglucan in corn bran, while TtGH74ΔCBM showed relatively higher catalytic activity on apple pomace, indicating that the role and significance of CBM1 are substrate-specific. The degrees of synergy for TtGH74 or TtGH74ΔCBM with the CBH1/EG1 mixture reached 1.22–2.02. The addition of GH10 xylanase in TtGH74 or the TtGH74ΔCBM/CBH1/EG1 mixture further improved the overall hydrolysis efficiency, and the degrees of synergy were up to 1.50–2.16.
Collapse
|