1
|
Yao L, Zhang Z, Chen G, Sun Z, Chen X, Yang H. Enhancing biomass enzymatic hydrolysis performance by modified DES lignin. J Biotechnol 2025; 403:115-125. [PMID: 40252735 DOI: 10.1016/j.jbiotec.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/17/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
The enzymatic hydrolysis of lignocellulose continues to be encumbered by elevated production costs and diminished cellulase efficiency. In this work, modified DES recovered lignin was obtained by grafting acrylamide and acryloyl chloride to enhance glucose release. At a cellulase dosage of 5 FPU/g-cellulose and pH of 5.5, modified lignin promoted glucose yield of dilute-acid-pretreated wheat straw by 158 % compared with control. The mechanism by which modified lignin promotes enzymatic hydrolysis was further explored. The binding constant was reduced from (3.3510 ± 0.8361)* 104 to (2.7600 ± 0.6027)* 103 L•mol-1 after modification. Modified lignin could make α-helix content enhancement so that cellulase had a compact and stable spatial structure. Lignin binds within the catalytic tunnel of cellulase and that the modified lignin interacts with cellulase with increased hydrogen bonding, resulting in a more compact cellulase structure. The modified lignin might reduce the unproductive adsorption of cellulase, and increase stability and cellulose accessibility to reduce cellulase cost.
Collapse
Affiliation(s)
- Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Life science and Health engineering, Hubei University of Technology, Wuhan 430068, PR China; Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996-2200, USA
| | - Zhe Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Life science and Health engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Guangyu Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Life science and Health engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Zhiyuan Sun
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Life science and Health engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Life science and Health engineering, Hubei University of Technology, Wuhan 430068, PR China.
| | - Haitao Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, PR China; Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996-2200, USA.
| |
Collapse
|
2
|
Chen N, Zhao M, Long Y, Zhang T, Jin Y, Wu W. Elucidation of the relationship between lignin structure and its inhibitory effect on enzymatic hydrolysis. Int J Biol Macromol 2025; 311:143907. [PMID: 40319977 DOI: 10.1016/j.ijbiomac.2025.143907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/16/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
In this work, milled wood lignin (MWL) was isolated from three distinct raw materials, including reed, poplar and pine. The research focused on investigating the adsorption of lignin onto cellulase and its subsequent impact on enzymatic hydrolysis. Analysis revealed that reed lignin consisted of three structural units: syringal (S), guaiacyl (G), and p-hydroxyphenyl (H), with a G/(G + S + H) molar ratio of 0.26; Poplar lignin contained S and G, with a G/(G + S + H) molar ratio of 0.63, while pine lignin only contained G. Quartz crystal microbalance with dissipation (QCM-D) results demonstrated that lignin with different types of structural units had varying adsorption capacity for cellulase. Specifically, lignin from coniferous wood (pine) displayed stronger adsorption with cellulase compared to lignin derived from grasses (reed) and broad-leaved wood (poplar). Atomic force microscope (AFM) analysis further indicated that G units promoted the adsorption between cellulase and lignin. These findings underscored a strong correlation between the structure of lignin and its interaction with cellulase, with the proportion of G units playing a pivotal role. Notably, a lower proportion of G units in lignin was beneficial in reducing lignin adsorption onto cellulase, thereby enhancing the saccharification rate.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Miao Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Long
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tingwei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Hou J, Zhang Q, Tian F, Liu F, Jiang J, Qin J, Wang H, Wang J, Chang S, Hu X. Structure changes of lignin and their effects on enzymatic hydrolysis for bioethanol production: a focus on lignin modification. J Biotechnol 2024; 393:61-73. [PMID: 39067576 DOI: 10.1016/j.jbiotec.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Enzymatic hydrolysis contributes to obtaining fermentable sugars using pretreated lignocellulose materials for bioethanol generation. Unfortunately, the pretreatment of lignocellulose causes low substrate enzymatic hydrolysis, which is due to the structure changes of lignin to produce main phenolic by-products and non-productive cellulase adsorption. It is reported that modified lignin enhances the speed of enzymatic hydrolysis through single means to decrease the negative effects of fermentation inhibitors or non-productive cellulase adsorption. However, a suitable modified lignin should be selected to simultaneously reduce the fermentation inhibitors concentration and non-productive cellulase adsorption for saving resources and maximizing the enzymatic hydrolysis productivity. Meanwhile, the adsorption micro-mechanisms of modified lignin with fermentation inhibitors and cellulase remain elusive. In this review, different pretreatment effects toward lignin structure, and their impacts on subsequent enzymatic hydrolysis are analyzed. The main modification methods for lignin are presented. Density functional theory is used to screen suitable modification methods for the simultaneous reduction of fermentation inhibitors and non-productive cellulase adsorption. Lignin-fermentation inhibitors and lignin-cellulase interaction mechanisms are discussed using different advanced analysis techniques. This article addresses the gap in previous reviews concerning the application of modified lignin in the enhancement of bioethanol production. For the first time, based on existing studies, this work posits the hypothesis of applying theoretical simulations to screen efficient modified lignin-based adsorbents, in order to achieve a dual optimization of the detoxification and saccharification processes. We aim to improve the integrated lignocellulose transformation procedure for the effective generation of cleaner bioethanol.
Collapse
Affiliation(s)
- Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Fuxiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fuwen Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jingxian Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jiaolong Qin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Huifeng Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jing Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Shufang Chang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
4
|
Deng J, Ahmad B, Deng X, Fan Z, Liu L, Lu X, Pan Y, Zha X. Genome-wide analysis of the mulberry ( Morus abla L.) GH9 gene family and the functional characterization of MaGH9B6 during the development of the abscission zone. FRONTIERS IN PLANT SCIENCE 2024; 15:1352635. [PMID: 38633459 PMCID: PMC11021789 DOI: 10.3389/fpls.2024.1352635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Plant glycoside hydrolase family 9 genes (GH9s) are widely distributed in plants and involved in a variety of cellular and physiological processes. In the current study, nine GH9 genes were identified in the mulberry and were divided into two subfamilies based on the phylogenetic analysis. Conserved motifs and gene structure analysis suggested that the evolution of the two subfamilies is relatively conserved and the glycoside hydrolase domain almost occupy the entire coding region of the GH9s gene. Only segmental duplication has played a role in the expansion of gene family. Collinearity analysis showed that mulberry GH9s had the closest relationship with poplar GH9s. MaGH9B1, MaGH9B6, MaGH9B5, and MaGH9B3 were detected to have transcript accumulation in the stalk of easy-to drop mature fruit drop, suggesting that these could play a role in mulberry fruit drop. Multiple cis-acting elements related to plant hormones and abiotic stress responses were found in the mulberry GH9 promoter regions and showed different activities under exogenous abscisic acid (ABA) and 2,4- dichlorophenoxyacetic acid (2,4-D) stresses. We found that the lignin content in the fruit stalk decreased with the formation of the abscission zone (AZ), which could indirectly reflect the formation process of the AZ. These results provide a theoretical basis for further research on the role of GH9s in mulberry abscission.
Collapse
Affiliation(s)
- Jing Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Bilal Ahmad
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zelin Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Lianlian Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xiuping Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yu Pan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xingfu Zha
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Mou L, Pan R, Liu Y, Jiang W, Zhang W, Jiang Y, Xin F, Jiang M. Isolation of a newly Trichoderma asperellum LYS1 with abundant cellulase-hemicellulase enzyme cocktail for lignocellulosic biomass degradation. Enzyme Microb Technol 2023; 171:110318. [PMID: 37683573 DOI: 10.1016/j.enzmictec.2023.110318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
As the most abundant and renewable natural resource in the world, lignocellulose is a promising alternative to fossil energy to relieve environmental concerns and resource depletion. However, due to its recalcitrant structure, strains with efficient degradation capability still need exploring. In this study, a fungus was successfully isolated from decayed wood and named as Trichoderma asperellum LYS1 by phylogenetic and draft genomic analysis. The further investigations showed that strain LYS1 had an outstanding performance on lignocellulose degradation, especially for hemicellulose-rich biomass. After the analysis of encoded CAZymes, mainly on GH family, a large amount of genes coding β-glucosidase and xylanase may contribute to the high degradation of cellulose and hemicellulose. Collectively, the results generated in this study demonstrated that T. asperellum LYS1 is a potential cell factory for lignocellulose biorefinery.
Collapse
Affiliation(s)
- Lu Mou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Runze Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yansong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu Academy of Chemical Inherent Safety, Nanjing 211800, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu Academy of Chemical Inherent Safety, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu Academy of Chemical Inherent Safety, Nanjing 211800, PR China
| |
Collapse
|
6
|
Hu S, Zhang T, Jiang B, Huang C, Wei W, Wu W, Jin Y. Achieving high enzymatic hydrolysis sugar yield of sodium hydroxide-pretreated wheat straw with a low cellulase dosage by adding sulfomethylated tannic acid. BIORESOURCE TECHNOLOGY 2023:129276. [PMID: 37290709 DOI: 10.1016/j.biortech.2023.129276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Sulfonated lignin can significantly enhance the enzymatic hydrolysis of lignocellulose substrates. Lignin is a type of polyphenol, therefore, sulfonated polyphenol, such as tannic acid, is likely to have similar effects. In order to obtain a low-cost and high-efficiency additive to improve enzymatic hydrolysis, sulfomethylated tannic acids (STAs) with different sulfonation degrees were prepared and their impact on enzymatic saccharification of sodium hydroxide-pretreated wheat straw were investigated. Tannic acid strongly inhibited, while STAs strongly promoted the substrate enzymatic digestibility. While adding 0.04 g/g-substrate STA containing 2.4 mmol/g sulfonate group, the glucose yield increased from 60.6% to 97.9% at a low cellulase dosage (5 FPU/g-glucan). The concentration of protein in enzymatic hydrolysate significantly increased with the added STAs, indicating that cellulase preferentially adsorbed with STAs, thereby reducing the amount of cellulase nonproductively anchored on substrate lignin. This result provides a reliable approach for establishing an efficient lignocellulosic enzyme hydrolysis system.
Collapse
Affiliation(s)
- Shihan Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tingwei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weiqi Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Chen H, Jiang B, Zou C, Lou Z, Song J, Wu W, Jin Y. Exploring how lignin structure influences the interaction between carbohydrate-binding module and lignin using AFM. Int J Biol Macromol 2023; 232:123313. [PMID: 36682668 DOI: 10.1016/j.ijbiomac.2023.123313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Nonproductive adsorption of cellulase onto the residual lignin in substrate seriously hinders the enzymatic hydrolysis. To understand how lignin structure affects lignin-cellulase interaction, the carbohydrate-binding module (CBM) functionalized atomic force microscope tip was used to measure CBM-lignin interaction by single-molecule dynamic force spectroscopy in this work. The results showed that sulfonated lignin (SL) has the greatest adhesion force to CBM (4.74 nN), while those of masson pine milled wood lignin (MWL), poplar MWL and herbaceous MWLs were 2.85, 1.03 and 0.27-0.61 nN, respectively. It provides direct quantitative evidence for the significance of lignin structure on lignin-cellulase interaction. The CBM-MWLs interaction decreased sharply to 0.054-0.083 nN while SL was added, indicating the primary mechanism of SL promoting lignocellulose hydrolysis was significantly reducing the nonproductive adsorption of substrate lignin on cellulase. Finally, the "competitive adsorption" mechanism was proposed to interpret why SL effectively promotes the enzymatic hydrolysis of lignin-containing substrates.
Collapse
Affiliation(s)
- Hui Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chunyang Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhichao Lou
- Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Liu T, Wang P, Tian J, Guo J, Zhu W, Seidi F, Jin Y, Xiao H, Song J. Enzymatic saccharification promotion for bioenergy poplar under green liquor pretreatment by fully sulfonated polystyrene: Effect of molecular weight. BIORESOURCE TECHNOLOGY 2022; 363:127904. [PMID: 36108943 DOI: 10.1016/j.biortech.2022.127904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Water-soluble lignin and lignin derivatives are cited to promote the enzymatic saccharification of lignocellulose. Herein, a series of fully sulfonated polystyrene sulfonates (FSPSSs) with various molecular weights (MW) were synthesized through free radical polymerization (FRP) and atom transfer radical polymerization (ATRP) to serve as lignin analogues to boost the enzymatic saccharification of bioenergy poplar under green liquor pretreatment. The FRP-made polymers with MW 944.5 × 103 to 123.6 × 103 g/mol increased the enzymatic hydrolysis digestibility (SED) by 13 % to 18.8 %. On contrary, the ATRP-made polymers with lower MW (3.8 × 103-12.2 × 103 g/mol) showed a weak effect with<8 % improvement in SED. This can be explained the adsorption capacity and the conformation of cellulase-FSPSS complexes, which respond to the reducing nonproductive adsorption correlated to their MWs, due to the strong dependence of molecular conformation on the chain length of strong polyelectrolytes.
Collapse
Affiliation(s)
- Tian Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Peipei Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Tian
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Fazard Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Zhan Y, Cheng J, Liu X, Huang C, Wang J, Han S, Fang G, Meng X, Ragauskas AJ. Assessing the availability of two bamboo species for fermentable sugars by alkaline hydrogen peroxide pretreatment. BIORESOURCE TECHNOLOGY 2022; 349:126854. [PMID: 35176465 DOI: 10.1016/j.biortech.2022.126854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
This study comprehensively investigated two bamboo species (i.e. Neosinocalamus affinis and Phyllostachys edulis) in terms of their cell wall ultrastructure, chemical compositions, enzymatic saccharification, and lignin structure before and after alkaline hydrogen peroxide pretreatment (AHP). During AHP, Neosinocalamus affinis (NAB) had higher delignification than Phyllostachys edulis (PEB), and thus showed better enzymatic digestibility (93.05% vs 53.57% for glucan). The fundamental chemical behavior of the bamboo lignins was analyzed by fluorescence microscope (FM), confocal Raman microscope (CRM), molecular weight analysis, and 2D HSQC-NMR. Results indicated that the PEB has thicker cell wall and more concentrated lignin in its compound middle lamella and cell corner middle lamella than NAB. Moreover, PEB lignin contains more G units (S/G of 0.95), in evident contrast to that of NAB lignin (S/G of 1.30), which favor the formation of C-C linkages, thus impeding its degradation during the AHP.
Collapse
Affiliation(s)
- Yunni Zhan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Jinyuan Cheng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Xuze Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Jia Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shanming Han
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
10
|
Shu F, Jiang B, Yuan Y, Li M, Wu W, Jin Y, Xiao H. Biological Activities and Emerging Roles of Lignin and Lignin-Based Products─A Review. Biomacromolecules 2021; 22:4905-4918. [PMID: 34806363 DOI: 10.1021/acs.biomac.1c00805] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bioactive substances, displaying excellent biocompatibility, chemical stability, and processability, could be extensively applied in biomedicine and tissue engineering. In recent years, plant-based bioactive substances such as flavonoids, vitamins, terpenes, and lignin have received considerable attention due to their human health benefits and pharmaceutical/medical applications. Among them is lignin, an amorphous biomacromolecule mainly derived from the combinatorial radical coupling of three phenylpropane units (p-hydroxypenyl, guaiacyl, and syringyl) during lignification. Lignin possesses intrinsic bioactivities (antioxidative, antibacterial, anti-UV activities, etc.) against phytopathogens. Lignin also enhances the plant resistance (adaptability) against environmental stresses. The abundant structural features of lignin offer other significant bioactivities including antitumor and antivirus bioactivities, regulation of plant growth, and enzymatic hydrolysis of cellulose. This Review reports the latest research results on the bioactive potential of lignin and lignin-based substances in biomedicine, agriculture, and biomass conversion. Moreover, the interfacial reactions and bonding mechanisms of lignin with biotissue/cells and other constituents were also discussed, aiming at promoting the conversion or evolution of lignin from industrial wastes to value-added bioactive materials.
Collapse
Affiliation(s)
- Fan Shu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.,Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yufeng Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Mohan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.,Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada
| |
Collapse
|