1
|
Naganawa Y, Sakamoto K, Fujita A, Morimoto K, Ratanasak M, Hasegawa JY, Yoshida M, Sato K, Nakajima Y. One-Step Esterification of Phosphoric, Phosphonic and Phosphinic Acids with Organosilicates: Phosphorus Chemical Recycling of Sewage Waste. Angew Chem Int Ed Engl 2025; 64:e202416487. [PMID: 39541227 DOI: 10.1002/anie.202416487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
Global concerns regarding the depletion and strategic importance of phosphorus resources have increased demand for the recovery and recycling. However, waste-derived phosphorus compounds, primarily as chemically inert phosphoric acid or its salts, present a challenge to their direct conversion into high-value chemicals. We aimed to develop an innovative technology that utilizes the large quantities of sewage waste, bypasses the use of white phosphorus, and enables esterification of phosphoric acid to produce widely applicable phosphate triesters. Tetraalkyl orthosilicates emerged as highly effective reagents for the direct triple esterification of 85 % phosphoric acid, as well as the esterification of organophosphinic and phosphonic acids. Furthermore, we achieved esterification of recovered phosphoric acid with tetraalkyl orthosilicate, thus pioneering a recycling pathway from sewage waste to valuable phosphorus chemicals. Experimental and theoretical investigations revealed a novel mechanism, wherein tetraalkyl orthosilicates facilitate multimolecular aggregation to achieve alkyl transfer from tetraalkylorthosilicate to phosphoric acid via multiple proton shuttling.
Collapse
Affiliation(s)
- Yuki Naganawa
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kei Sakamoto
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Akira Fujita
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuya Morimoto
- Research Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Manussada Ratanasak
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Jun-Ya Hasegawa
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Masaru Yoshida
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
2
|
Tien Nguyen G, Van Phuoc B, Thi Nhung T, Thi Duy Hanh L, Tuan HNA, Nhiem LT. Polyethylene Glycol/Rice Husk Ash Shape-Stabilized Phase Change Materials: Recovery of Thermal Energy Storage Efficacy via Engineering Porous Support Structure. ACS OMEGA 2024; 9:17104-17113. [PMID: 38645338 PMCID: PMC11025094 DOI: 10.1021/acsomega.3c09417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
This study focuses on modifying the porous structure of acid-treated rice husk ash (ARHA) to enhance the thermal energy storage capacity of poly(ethylene glycol) (PEG) confined within shape-stabilized phase change materials. The modification process involved a cost-effective sol-gel method in which ARHA was initially dissolved in an alkaline solution and subsequently precipitated in an acidic environment. ARHA, being a mesoporous SiO2-based material with a high surface area but low pore volume, had limited capacity to adsorb PEG (50%). Furthermore, it hindered the crystallinity of impregnated PEG by fostering abundant interfacial hydrogen bonds (H-bonds), resulting in a diminished thermal energy storage efficiency. Following modification of the porous structure, the resulting material, termed mARHA, featured a three-dimensional macroporous network, providing ample space to stabilize a significant amount of PEG (70%) without any leakage. Notably, mARHA, with a reduced surface area, effectively mitigated interfacial H-bonds, consequently enhancing the crystallinity of impregnated PEG. This modification led to the recovery of thermal energy storage efficacy from 0 J/g for PEG/ARHA to 109.3 J/g for PEG/mARHA. Additionally, the PEG/mARHA composite displayed improved thermal conductivity, reliable thermal performance, and effective thermal management when used as construction materials. This work introduces a straightforward and economical strategy for revitalizing thermal energy storage in PEG composites confined within RHA-based porous supports, offering promising prospects for large-scale applications in building energy conservation.
Collapse
Affiliation(s)
- Giang Tien Nguyen
- Faculty of Chemical and Food
Technology, Ho Chi Minh City University
of Technology and Education (HCMUTE), 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Bui Van Phuoc
- Faculty of Chemical and Food
Technology, Ho Chi Minh City University
of Technology and Education (HCMUTE), 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Tran Thi Nhung
- Faculty of Chemical and Food
Technology, Ho Chi Minh City University
of Technology and Education (HCMUTE), 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Le Thi Duy Hanh
- Faculty of Chemical and Food
Technology, Ho Chi Minh City University
of Technology and Education (HCMUTE), 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Huynh Nguyen Anh Tuan
- Faculty of Chemical and Food
Technology, Ho Chi Minh City University
of Technology and Education (HCMUTE), 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Ly Tan Nhiem
- Faculty of Chemical and Food
Technology, Ho Chi Minh City University
of Technology and Education (HCMUTE), 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
3
|
Tang Z, Wu C, Tang W, Ma C, He YC. A novel cetyltrimethylammonium bromide-based deep eutectic solvent pretreatment of rice husk to efficiently enhance its enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2023; 376:128806. [PMID: 36858123 DOI: 10.1016/j.biortech.2023.128806] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Deep eutectic solvent (DES) has caught widely attention of researchers in biomass pretreatment. As a highly efficient surfactant, cetyltrimethylammonium bromide (CTAB) was expected to be used for synthesizing new DESs with additional functions in pretreatment. In this work, an efficient pretreatment method using a mixture of CTAB and lactic acid (LA) as a novel functional DES was established to improve enzymatic digestion efficiency of rice husk (RH). The results showed that DES CTAB:LA effectively removed lignin (51.5%) and xylan (79.9%) and the enzymatic hydrolysis activity of CTAB:LA-treated RH was 5 times that of RH. Then, a series of characterization demonstrated that a substantial accessibility increased, a hydrophobicity and lignin surface area decreased, and great surface morphology alternation were observed on the treated RH, which explained the increase in enzymatic hydrolysis efficiency. Overall, the discovery of more functional DESs might be motivated and biorefinery pretreatment processes might be greatly promoted.
Collapse
Affiliation(s)
- Zhengyu Tang
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Changqing Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Wei Tang
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China.
| |
Collapse
|