1
|
He L, Li J, Tang L, Wang Y, Zhao X, Ding K, Xu L, Gu L, Cheng S, Wei YY. Applying side-stream gas recirculation to promote anaerobic digestion of food waste under ammonia stress: Overlooked impact of gaseous atmospheres on microorganisms. WATER RESEARCH 2025; 281:123571. [PMID: 40184706 DOI: 10.1016/j.watres.2025.123571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
High ammonia concentrations can be toxic to microorganisms, leading to the accumulation of hydrogen (H2) and acids in anaerobic digestion (AD) system. In this study, a side gas recycling strategy (SGR), coupled with a primary reactor and a small side-stream reactor, which recirculates biogas between primary reactor and side reactor was employed to mitigate ammonia inhibition. This approach enabled the mesophilic side-stream gas recirculation system (SMGR) and the thermophilic side-stream gas recirculation system (STGR) to ultimately withstand ammonia stress levels of 2.5 g/L and 3.5 g/L, respectively, while maintaining lower hydrogen partial pressures. In contrast, the control group experienced system failure at an ammonia concentration of 2 g/L. Enzyme activity, microbial community, and metaproteomic analysis indicated that the side reactor enriched microorganisms with strong hydrogen-utilizing capacity, while the primary reactor was enriched with Methanosaeta. Furthermore, key pathways related to propionate metabolism, ABC transporters, and methane production were enhanced in the primary reactor, along with increased ATPase activity. The activity of key enzymes involved in AD was also significantly enhanced. This study enhances the understanding of the impact of gas atmosphere control on the microbial ecology and metabolic characteristics of AD system, providing valuable insights and practical guidance for the development of Engineering applications in this field.
Collapse
Affiliation(s)
- Linyan He
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Jinze Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Lizhan Tang
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Yifei Wang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Xueyu Zhao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Keke Ding
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Linji Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Shang Cheng
- Animal Husbandry Technology Popularization Master Station of Chongqing, Chongqing 401121, China
| | - Yi Yuan Wei
- Animal Husbandry Technology Popularization Master Station of Chongqing, Chongqing 401121, China
| |
Collapse
|
2
|
Farid MU, Olbert IA, Bück A, Ghafoor A, Wu G. CFD modelling and simulation of anaerobic digestion reactors for energy generation from organic wastes: A comprehensive review. Heliyon 2025; 11:e41911. [PMID: 39897918 PMCID: PMC11783454 DOI: 10.1016/j.heliyon.2025.e41911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Anaerobic digestion (AD) has been recognized as one of the most viable options for the treatment of a wide range of waste materials. Complex structure of wastes is safely broken down to destroy pollutants and pathogens. Biogas is produced as a by-product of this process which is considered as a clean energy resource. However, provision of controlled environment for microbial activities is critical to ensure the required process efficiency. This can only be achieved with the efficient design of controlled vessels used for anaerobic digestion, termed as AD reactors. AD functions such as mixing, hydrodynamics, multiphase interaction, heat transfer, temperature distribution and bio kinetics are significantly affected by the reactor shape, design and configurations, hence making it essential to optimize the reactor design before installation at large scale. Mostly, such optimization is carried out with the help of lab scale experimentations and testing protocols which result in high costs for repeating several design experiments. Computational fluid dynamics (CFD) is an applied mathematical tool which helps to understand and predict the fluid dynamics, heat flow as well as species transport in different domains. This approach contributes to minimize the experimental costs while optimizing the reactor configurations in less time. The current review is presented to summarize and discuss the core characteristics of AD process followed by concerned CFD attributes. Research gaps and critical challenges are identified in different aspects such as reactor design, and configuration, mixing, multiphase flow, heat transfer, biokinetics as well as machine learning approaches.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- Institute of Particle Technology (LFG), Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nuremberg Cauerstr, 4, D-91058, Erlangen, Germany
- Civil Engineering, School of Engineering, University of Galway, Galway, H91HX31, Ireland
| | - Indiana A. Olbert
- Civil Engineering, School of Engineering, University of Galway, Galway, H91HX31, Ireland
| | - Andreas Bück
- Institute of Particle Technology (LFG), Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nuremberg Cauerstr, 4, D-91058, Erlangen, Germany
| | - Abdul Ghafoor
- Department of Farm Machinery and Power, University of Agriculture, Faisalabad, 38000, Faisalabad, Pakistan
| | - Guangxue Wu
- Civil Engineering, School of Engineering, University of Galway, Galway, H91HX31, Ireland
| |
Collapse
|
3
|
Chung TH, Dhillon SK, Shin C, Pant D, Dhar BR. Microbial electrosynthesis technology for CO 2 mitigation, biomethane production, and ex-situ biogas upgrading. Biotechnol Adv 2024; 77:108474. [PMID: 39521393 DOI: 10.1016/j.biotechadv.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Currently, global annual CO2 emissions from fossil fuel consumption are extremely high, surpassing tens of billions of tons, yet our capacity to capture and utilize CO2 remains below a small fraction of the amount generated. Microbial electrosynthesis (MES) systems, an integration of microbial metabolism with electrochemistry, have emerged as a highly efficient and promising bio-based carbon-capture-and-utilization technology over other conventional techniques. MES is a unique technology for lowering the atmospheric CO2 as well as CO2 in the biogas, and also simultaneously convert them to renewable bioenergy, such as biomethane. As such, MES techniques could be applied for biogas upgrading to generate high purity biomethane, which has the potential to meet natural gas standards. This article offers a detailed overview and assessment of the latest advancements in MES for biomethane production and biogas upgrading, in terms of selecting optimal methane production pathways and associated electron transfer processes, different electrode materials and types, inoculum sources and microbial communities, ion-exchange membrane, externally applied energy level, operating temperature and pH, mode of operation, CO2 delivery method, selection of inorganic carbon source and its concentration, start-up time, and system pressure. It also highlights the current MES challenges associated with upscaling, design and configuration, long-term stability, energy demand, techno-economics, achieving net negative carbon emission, and other operational issues. Moreover, we provide a summary of current and future opportunities to integrate MES with other unique biosystems, such as methanotrophic bioreactors, and incorporate quorum sensing, 3D printing, and machine learning to further develop MES as a better biomethane-producer and biogas upgrading technique.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Kaur Dhillon
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Chungheon Shin
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States; Codiga Resource Recovery Center (CR2C), Stanford, CA, United States
| | - Deepak Pant
- Electrochemistry Excellence Centre, Materials & Chemistry Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Fan X, Peng C, Yang J, Zhang Y, Lin S, Lin C, Wang Y, Zhou J. The collaboration and competition between indigenous microorganisms and exogenous anaerobic digester sludge in anaerobic treatment of pickled mustard wastewater at different salinities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123188. [PMID: 39492134 DOI: 10.1016/j.jenvman.2024.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The highly concentrated pickled mustard wastewater presents significant potential for energy recovery, but the stress effect of high osmotic pressure on cell integrity and activity seriously impedes the methane production by anaerobic microorganisms. The survival ability of indigenous microorganisms (IM) in pickled mustard wastewater supports the establishment of anaerobic treatment. Moreover, inoculation of anaerobic digester sludge is a common start-up strategy. However, the effects of exogenous anaerobic sludge on IM are unclear, especially in hypersaline environment. This research aimed to investigate the influence of exogenous anaerobic sludge on the construction, performance, and microbiota at 3% and 5% salinity. And the research focused on the collaboration and competition between exogenous anaerobic sludge and IM. The neutral community model (which explains the formation and evolution of biological communities) indicated that the interaction between exogenous digester sludge microorganisms and IM dominated community assembly. At 3%, the digester sludge collaborated with IM to increase daily COD reduction and biogas production compared with IM group. However, at 5%, the competitive relationship reduced daily COD reduction and biogas production compared with IM group. This study provides a new perspective for the selection of inoculation strategies for exogenous anaerobic digester sludge under different salinity, in order to realize energy conversion from salinity organic wastewater.
Collapse
Affiliation(s)
- Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Ce Peng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jingyi Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Ying Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Shuxuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Chengbao Lin
- China Railway Eryuan Engineering Group Co., Ltd, Chengdu, Sichuan, 610031, PR China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
5
|
Zheng X, Li R. Mechanisms of how exogenous CO 2 affects methane production in an optimized high-solid anaerobic digester treating co-substrates of sewage sludge and food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175837. [PMID: 39209165 DOI: 10.1016/j.scitotenv.2024.175837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/04/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The CO2 addition could promote anaerobic digestion, but the exploration on bioconversion mechanisms of exogenous CO2 in high-solid anaerobic digestion (HSAD) system is still insufficient. This study investigated the performance of a CO2-added HSAD treating co-substrates of sewage sludge and food waste (FW). The maximum methane yield of 623.4 mL CH4/g-VSremoved was obtained with FW proportion of 75 %, organic loading of 3.7 g-VS/L/d and intermittent stirring. The CO2 addition could improve the methane yield by 11.8 % under the optimized conditions. Thermodynamic analysis showed that the most energetically favorable reaction for CH4 production was acetoclastic methanogenesis (AM), and the main bioconversion pathway of exogenous CO2 was homoacetogenesis (HA). Significantly higher methanogenic activity was achieved with CO2 addition during acetate decomposition testing, suggesting enhanced AM pathway. The AM methanogens Methanosaeta were also enriched. Therefore, the main mechanism of the enhanced methane production by CO2 addition was the facilitation of coupled HA-AM pathway.
Collapse
Affiliation(s)
- Xinyi Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Ruying Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
6
|
Xiao Y, Qin Y, Jiang X, Gao P. Effects of polypropylene microplastics on digestion performance, microbial community, and antibiotic resistance during microbial anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 411:131358. [PMID: 39191296 DOI: 10.1016/j.biortech.2024.131358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
As an emerging pollutant, microplastics (MPs) have attracted increasing attention worldwide. The effects of polypropylene (PP) MPs on digestion performance, behaviors of dominant microbial communities, antibiotic resistance genes (ARGs) and mobile genetic elements in microbial anaerobic digesters were investigated. The results showed that the addition of PP-MPs to digesters led to an increase in methane production of 10.8% when 300 particles/g TSS of PP-MPs was introduced compared with that in digester not treated with PP-MPs. This increase was attributed to the enrichment of acetogens such as Syntrophobacter (42.0%), Syntrophorhabdus (27.0%), and Syntrophomonas (10.6%), and methanogens including Methanobacterium and Methanosaeta. tetX was highly enriched due to PP-MP exposure, whereas parC exhibited the greatest increase (35.5% - 222.7%). Horizontal gene transfer via ISCR1 and intI1 genes might play an important role in the spread of ARGs. Overall, these findings provide comprehensive insight into the ecological dynamics of PP-MPs during microbial anaerobic digestion.
Collapse
Affiliation(s)
- Yu Xiao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Qin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoying Jiang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
7
|
Pei S, Fan X, Qiu C, Liu N, Li F, Li J, Qi L, Wang S. Effect of biochar addition on the anaerobic digestion of food waste: microbial community structure and methanogenic pathways. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:894-907. [PMID: 39141040 DOI: 10.2166/wst.2024.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/20/2024] [Indexed: 08/15/2024]
Abstract
This study assessed the effects of the addition of biochar prepared at 700 °C with different dosages on the anaerobic digestion of food waste. The biochar addition at a concentration of 10.0 g/L increased the cumulative methane yield by 128%, and daily methane production was also significantly promoted. The addition of biochar derived from poplar sawdust significantly increased the relative abundance of dominant bacteria for anaerobic digestion by 85.54-2530% and promoted the degradation of refractory organic matter and the transfer of materials between the hydrolysis and acid production stages. Further analysis has demonstrated that Bathyarchaeia and hydrogenotrophic methanogens were enriched by the biochar addition. Meanwhile, the relative abundances of functional genes, including C5-branched dibasic acid metabolism, and pyruvate metabolism, were increased by 11.38-26.27%. The relative abundances of genes related to major amino acid metabolism, including histidine metabolism, lysine biosynthesis, and phenylalanine, tyrosine, and tryptophan biosynthesis, were increased by 11.96-15.71%. Furthermore, the relative abundances of genes involved in major replication and repair were increased by 14.76-22.76%, and the major folding, sorting, degradation, and translation were increased by 14.47-19.95%, respectively. The relative abundances of genes related to major membrane transport and cell motility were increased by 10.02 and 83.09%, respectively.
Collapse
Affiliation(s)
- Siyao Pei
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiaodan Fan
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Nannan Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China E-mail:
| | - Fei Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jiakang Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Li Qi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| |
Collapse
|
8
|
Ling Chan H, Xu H, Zhou Y. External ceramic membrane contactor for in-situ H 2 assisted biogas upgrading. BIORESOURCE TECHNOLOGY 2024; 406:130981. [PMID: 38879053 DOI: 10.1016/j.biortech.2024.130981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024]
Abstract
Biological H2-assisted biogas upgrading has gained significant attention as an environmentally friendly substitute to common physico-chemical upgrading techniques, but is largely limited by the low solubility of H2. This study evaluated the design of a ceramic membrane contactor module for H2 injection. H2 dissolution was maintained at high efficiency by controlling gas supply and sludge recirculation rate, achieving a biogas quality of average 98.8% CH4 during the stable operation phase with a 108% increase in the CH4 production rate. This also outperforms conventional H2 injection using diffuser sparging which could only achieve a biogas quality of 84% CH4 content. Microbial community analysis found high Methanobacterium spp. abundance within the archaea at 95.2% at the end of the operation, allowing the dominance of the hydrogenotrophic methanogenesis pathway for high upgrading efficiencies. The system is a high-performance external membrane connector module coupled to common anaerobic digestion systems for biogas upgrading.
Collapse
Affiliation(s)
- Hui Ling Chan
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Hui Xu
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
9
|
Lee ES, Park SY, Kim CG. Comparison of anaerobic digestion of starch- and petro-based bioplastic under hydrogen-rich conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:133-145. [PMID: 38194798 DOI: 10.1016/j.wasman.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
To identify an economically viable waste management system for bioplastics, thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate) (PBAT) were anaerobically digested under hydrogen (H2)/carbon dioxide (CO2) and nitrogen (N2) gas-purged conditions to compare methane (CH4) production and biodegradation. Regardless of the type of bioplastics, CH4 production was consistently higher with H2/CO2 than with N2. The highest amount of CH4 was produced at 307.74 mL CH4/g volatile solids when TPS digested with H2/CO2. A stepwise increased in CH4 yield was observed, with a nominal initial increment followed by accelerated methanogenesis conversion as H2 was depleted. This may be attributed to a substantial shift in the microbial structure from hydrogenotrophic methanogen (Methanobacteriales and Methanomicrobiales) to heterotrophs (Spirochaetia). In contrast, no significant change was observed with PBAT, regardless of the type of purged gas. TPS was broken down into numerous derivatives, including volatile fatty acids. TPS produced more byproducts with H2/CO2 (i.e., 430) than with N2 (i.e., 320). In contrast, differential scanning calorimetry analysis on PBAT revealed an increase in crystallinity from 10.20 % to 12.31 % and 11.36 % in the H2/CO2- and N2-purged conditions, respectively, after 65 days of testing. PBAT surface modifications were characterized via Fourier transform infrared spectroscopy and scanning electron microscopy. The results suggest that the addition of H2/CO2 can enhance the CH4 yield and increase the breakdown rate of TPS more than that of PBAT. This study provides novel insights into the CH4 production potential of two bioplastics with different biodegradabilities in H2/CO2-mediated anaerobic digestion systems.
Collapse
Affiliation(s)
- Eun Seo Lee
- Program in Environmental and Polymer Engineering, INHA University, Incheon 22212, Republic of Korea
| | - Seon Yeong Park
- Institute of Environmental Research, INHA University, Incheon 22212, Republic of Korea
| | - Chang Gyun Kim
- Program in Environmental and Polymer Engineering, INHA University, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, Incheon 22212, Republic of Korea.
| |
Collapse
|
10
|
Wang Z, Liu K. Effect of Intertidal Vegetation ( Suaeda salsa) Restoration on Microbial Diversity in the Offshore Areas of the Yellow River Delta. PLANTS (BASEL, SWITZERLAND) 2024; 13:213. [PMID: 38256766 PMCID: PMC10820354 DOI: 10.3390/plants13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
The coastal wetlands in the Yellow River Delta play a vital role in the ecological function of the area. However, the impact of primary restoration on microbial communities is not yet fully understood. Hence, this study aimed to analyze the bacterial and archaeal communities in the soil. The results indicated that Marinobacter and Halomonas were predominant in the bacterial community during spring and winter. On the other hand, Muribaculaceae and Helicobacter were prevalent during the core remediation of soil, while Inhella and Halanaerobium were predominant in non-vegetation-covered high-salinity soil. The bacterial Shannon index showed significant differences in vegetation-covered areas. For archaea, Salinigranum, Halorubrum, and Halogranum were dominant in vegetation areas, while Halolamina, Halogranum, and Halorubrum were prevalent in non-vegetation areas. The colonization of Suaeda salsa led to differences in the composition of bacteria (22.6%) and archaea (29.5%), and salt was one of the significant reasons for this difference. The microflora was more diverse, and the elements circulated after vegetation grounding, while the microbial composition in non-vegetation areas was similar, but there was potential competition. Therefore, vegetation restoration can effectively restore soil ecological function, while the microorganisms in the soil before restoration provide germplasm resources for pollutant degradation and antimicrobial development.
Collapse
Affiliation(s)
- Zhaohua Wang
- First Institute of Oceanography, MNR, Qingdao 266061, China;
| | - Kai Liu
- Dongying Research Institute for Oceanography Development, Dongying 257000, China
| |
Collapse
|
11
|
Han Y, Yang P, Feng Y, Wang N, Yuan X, An J, Liu J, Li N, He W. Liquid-gas phase transition enables microbial electrolysis and H2-based membrane biofilm hybrid system to degrade organic pollution and achieve effective hydrogenotrophic denitrification of groundwater. CHEMOSPHERE 2023; 331:138819. [PMID: 37127198 DOI: 10.1016/j.chemosphere.2023.138819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Electron-donor Lacking was the limiting factor for the denitrification of oligotrophic groundwater and hydrogenotrophic denitrification provided an efficient approach without secondary pollution. In this study, a hybrid system with microbial electrolysis cell (MEC) assisted hydrogen-based membrane biofilm reactor (MBfR) was established for advanced groundwater denitrification. The liquid-gas phase transition prevented the potential pollution from organic wastes in MEC to groundwater, while the bubble-free diffusion of MBfR promoted hydrogen utilization efficiency. The negative-pressure extraction from MEC and the positive pressure for gas supply into MBfR increased the hydrogen proportion and current density of MEC, and improved the kinetic constant K of the denitrification reaction in MBfR. With actual groundwater, the MEC-MBfR hybrid system achieved a nitrate reduction of 97.8% with an effluent NO3--N of 2.2 ± 1.0 mg L-1. The hydrogenotrophic denitrifiers of Thauera, Pannonibacter, and Azonexus, dominated the denitrification biofilm on the membrane and elastic filler in MBfR.
Collapse
Affiliation(s)
- Yu Han
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Pinpin Yang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Xiaole Yuan
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jingkun An
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China.
| |
Collapse
|
12
|
Zheng M, Ou H, Dong F, He C, Hu Z, Wang W. Mechanism insights into enhanced treatment of wasted activated sludge by hydrogen-mediated anaerobic digestion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47787-47799. [PMID: 36746864 DOI: 10.1007/s11356-023-25657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023]
Abstract
In the current study, different forms of added gas including H2, CO2, and mixed gas (VH2:VCO2 = 4:1), as well as different hydrogen partial pressures (0.10, 0.30, and 0.50 atm) were investigated for the influence on anaerobic performance in waste activated sludge (WAS) treatment. The mixed gas significantly improved methane production by over 20%, which positively correlated with the hydrogen partial pressure. However, pure H2 (0.5 atm) heavily inhibited methane production by 76.5%. Combined with the microbial metabolic activity study, H2 accelerated the hydrolysis process. Afterward, mixing with CO2 accelerated H2 and organic consumption, thus promoting WAS degradation and methane production. Based on the most extra release of organics, the mixed group exerted the superior performance with hydrogen partial pressure at 0.3 atm. The microbial community analysis evidenced that mixed gas enriched proteolytic and homoacetogenic bacteria and hybrid-trophic methanogens. By metagenomics study, hydrolysis, acetogenic, and methanogenesis pathways were all enhanced via the exogenous addition of H2 and CO2, sustainably transforming WAS towards CH4. This study discovered the mechanism of the enhanced conversion from WAS to CH4 by exogenous H2 and provided a promising approach for WAS reduction and energy recovery.
Collapse
Affiliation(s)
- Mengqi Zheng
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.,Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China.,Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
| | - Hua Ou
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.,Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China.,Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
| | - Fang Dong
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.,Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China.,Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
| | - Chunhua He
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.,Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China.,Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.,Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China.,Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China. .,Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China. .,Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China.
| |
Collapse
|
13
|
Yellezuome D, Zhu X, Liu X, Liu X, Liu R, Wang Z, Li Y, Sun C, Hemida Abd-Alla M, Rasmey AHM. Integration of two-stage anaerobic digestion process with in situ biogas upgrading. BIORESOURCE TECHNOLOGY 2023; 369:128475. [PMID: 36509302 DOI: 10.1016/j.biortech.2022.128475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
High impurity concentration of biogas limits its wide commercial utilization. Therefore, the integration of two-stage anaerobic digestion process with in situ biogas upgrading technologies is reviewed, with emphasis on their principles, main influencing factors, research success, and technical challenges. The crucial factors that influence these technologies are pH, alkalinity, and hydrogenotrophic methanogenesis. Hence, pH fluctuation and low gas-liquid mass transfer of H2 are some major technical challenges limiting the full-scale application of in situ upgrading techniques. Two-stage anaerobic digestion integration with various in situ upgrading techniques to form a hybrid system is proposed to overcome the constraints and systematically guide future research design and advance the development and commercialization of these techniques. This review intends to provide the current state of in situ biogas upgrading technologies and identify knowledge gaps that warrant further investigation to advance their development and practical implementation.
Collapse
Affiliation(s)
- Dominic Yellezuome
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xianpu Zhu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xin Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xuwei Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Zengzhen Wang
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yingkai Li
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chen Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang Province 314001, PR China
| | - Mohamed Hemida Abd-Alla
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Abdel-Hamied M Rasmey
- Botany and Microbiology Department, Faculty of Science, Suez University, Suez 43721, Egypt
| |
Collapse
|
14
|
Havryliuk O, Hovorukha V, Bida I, Gladka G, Tymoshenko A, Kyrylov S, Mariychuk R, Tashyrev O. Anaerobic Degradation of the Invasive Weed Solidago canadensis L. ( goldenrod) and Copper Immobilization by a Community of Sulfate-Reducing and Methane-Producing Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12010198. [PMID: 36616327 PMCID: PMC9824853 DOI: 10.3390/plants12010198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 06/01/2023]
Abstract
The weed Solidago canadensis L. poses a global threat to the environment as it spreads uncontrollably on roadsides, in forests, fields, meadows, and farmland. Goldenrod emits toxic substances that suppress other plants on the site, displacing wild ones. Thus, goldenrod conquers huge areas very quickly. The use of herbicides and mechanical methods does not solve the problem of the spontaneous spread of goldenrod. On the other hand, many scientists consider goldenrod as a valuable source of biologically active substances: flavonoids, phenolic compounds, vitamins, etc. In this study, we consider Solidago plants as a promising, free (cheap), and renewable substrate for the production of methane gas. The goal of the study was to identify the main patterns of degradation of the Solidago canadensis L. plant by methane-producing and sulfate-reducing bacteria with methane gas production and simultaneous detoxification of toxic copper. The composition of the gas phase was monitored by gas chromatography. The pH and redox potential parameters were determined potentiometrically; metal concentrations were measured by photometry. The concentration of flavonoids, sugars and phenolic compounds in plant biomass was determined according to well-known protocols. As a result of the study, high efficiencies of methane degradation in the Solidago plant and copper detoxification were obtained. Methane yield has reached the value of 68.2 L kg-1 TS of Solidago canadensis L. biomass. The degradation coefficient (Kd) was also high at 21.4. The Cu(II) was effectively immobilized by methanogens and sulfate reducers during the goldenrod degradation at the initial concentrations of 500 mg L-1. Thus, a new method of beneficial application of invasive plants was presented. The result confirms the possibility of using methanogenic microorganisms to produce methane gas from invasive weeds and detoxification of toxic metals.
Collapse
Affiliation(s)
- Olesia Havryliuk
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Vira Hovorukha
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Iryna Bida
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Galyna Gladka
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Artem Tymoshenko
- Department of Biotechnology, Faculty of Environmental Safety, Engineering and Technologies, National Aviation University, 03058 Kyiv, Ukraine
| | - Semen Kyrylov
- Department of Biotechnology, Faculty of Environmental Safety, Engineering and Technologies, National Aviation University, 03058 Kyiv, Ukraine
| | - Ruslan Mariychuk
- Department of Ecology, Faculty of Humanities and Natural Sciences, Presov Universityin Presov, 08116 Presov, Slovakia
| | - Oleksandr Tashyrev
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| |
Collapse
|
15
|
Sun ZF, Zhao L, Wu KK, Wang ZH, Wu JT, Chen C, Yang SS, Wang AJ, Ren NQ. Overview of recent progress in exogenous hydrogen supply biogas upgrading and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157824. [PMID: 35931172 DOI: 10.1016/j.scitotenv.2022.157824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of renewable and sustainable energy, biogas upgrading for producing high-quality biomethane as an alternative to natural gas has attracted worldwide attention. This paper comprehensively reviews the current state of biogas upgrading technologies. The advances in physicochemical, photosynthetic autotrophic, and chemical autotrophic biogas upgrading technologies are briefly described with particular attention to the key challenges. New chemical autotrophic biogas upgrading strategies, such as direct and indirect exogenous hydrogen supply, for overcoming barriers to biogas upgrading and realizing highly efficient bioconversion of carbon dioxide are summarized. For each approach to exogenous hydrogen supply for biogas upgrading, the key findings and technical limitations are summarized and critically analyzed. Finally, future developments are also discussed to provide a reference for the development of biogas upgrading technology that can address the global energy crisis and climate change issues related to the application of biogas.
Collapse
Affiliation(s)
- Zhong-Fang Sun
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kai-Kai Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Han Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | | | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
16
|
Sohail M, Khan A, Badshah M, Degen A, Yang G, Liu H, Zhou J, Long R. Yak rumen fluid inoculum increases biogas production from sheep manure substrate. BIORESOURCE TECHNOLOGY 2022; 362:127801. [PMID: 35995345 DOI: 10.1016/j.biortech.2022.127801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Hydrolytic bacteria are essential for the degradation of lignocellulose to produce biogas and organic fertilizers. In this study, sheep manure was used as substrate, and sheep manure slurry, yak rumen fluid and slurry from a biogas reactor (SBR) were used as inocula in single-stage anaerobic digestion. The SBR and rumen fluid inocula increased biogas production by 23% and 43%, respectively, when compared to solely sheep manure in the single-stage anaerobic digestion. The two-stage anaerobic digestion, with yak rumen fluid as inoculum in the hydrolytic reactor, increased the biogas production by 59, 86, and 58% compared with the control. Microbial analysis of the effluent revealed that yak rumen fluid contained hydrolytic bacteria such as Proteiniphilum, Jeotgalibaca, Fermentimonas, and Atopostipes to enhance the degradation of sheep manure and increase biogas production. It was concluded that yak rumen fluid, rich in hydrolytic bacteria, increases the degradability of sheep manure and improves production of volatile fatt acids and biogas.
Collapse
Affiliation(s)
- Muhammad Sohail
- State Key Laboratory of Grassland Agro-ecosystem, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Alam Khan
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Malik Badshah
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel
| | - Guo Yang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000 China
| | - Hu Liu
- State Key Laboratory of Grassland Agro-ecosystem, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianwei Zhou
- State Key Laboratory of Grassland Agro-ecosystem, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Ruijun Long
- State Key Laboratory of Grassland Agro-ecosystem, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Nabi M, Gao D, Liang J, Cai Y, Zhang P. Combining high pressure homogenization with free nitrous acid pretreatment to improve anaerobic digestion of sewage sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115635. [PMID: 35949088 DOI: 10.1016/j.jenvman.2022.115635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Single pretreatment of sewage sludge, either physical, chemical or biological, has its own drawbacks in term of poor sanitization, energy intensity and high operational and capital cost. To tackle these drawbacks, combined high pressure homogenization (HPH) and free nitrous acid (FNA) pretreatment for sludge solubilization and further biodegradation in anaerobic digestion was investigated. Synergistic effect of combined HPH (40 MPa) and FNA (2.49 mg/L) pretreatment (HPH-FNA) for improving anaerobic digestion was evaluated, and its effect on archaeal and bacterial community structure was analyzed. Compared with single HPH and FNA pretreatments, HPH-FNA pretreatment efficiently solubilized wasted activated sludge (WAS), subsequently improved anaerobic digestion. Cumulative biogas production from sewage sludge pretreated with HPH-FNA was 154%, 108% and 284% more than that with single pretreatment of FNA, HPH and raw sludge, respectively. In addition, volumetric biogas production of combined pretreatment system (815 ml) was more than the sum from single pretreatment (710 ml). Methane content in biogas for raw sludge, FNA, HPH and HPH-FNA pretreated sludge was 45%, 51%, 55% and 65%, respectively. Illumina MiSeq sequencing analysis revealed that HPH-FNA pretreatment promoted bacterial growth of phyla Bacteroidetes, Firmicutes and Synergistetes and archaeal genera Methanospirillum and Methanosaeta. Overall, combined HPH-FNA pretreatment of sewage sludge, prior to anaerobic digestion, is an environmentally-friendly and potentially economic technology.
Collapse
Affiliation(s)
- Mohammad Nabi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yajing Cai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
18
|
Lin X, Wang N, Li F, Yan B, Pan J, Jiang S, Peng H, Chen A, Wu G, Zhang J, Zhang L, Huang H, Luo L. Evaluation of the synergistic effects of biochar and biogas residue on CO 2 and CH 4 emission, functional genes, and enzyme activity during straw composting. BIORESOURCE TECHNOLOGY 2022; 360:127608. [PMID: 35840030 DOI: 10.1016/j.biortech.2022.127608] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
This study examined the effects of biochar, biogas residue, and their combined amendments on CO2 and CH4 emission, enzyme activity, and related functional genes during rice straw composting. Results showed that the biogas residue increased CO2 and CH4 emissions by 13.07 % and 74.65 %, while biochar had more obvious inhibition. Biogas residue addition enhanced functional gene abundance more than biochar. Biogas residue raised the methanogens mcrA gene by 2.5 times. Biochar improved the Acetyl-CoA synthase and β-glucosidase activities related to carbon fixation and decreased coenzyme activities related to methanogens. Biochar and biogas residue combined amendments enhanced the acsB gene abundance for CO2 assimilation process and decreased methyl-coenzyme M reductase α subunit activity. Pearson correlation analysis indicated that organic matter was the significant variable affecting CO2 and CH4 emissions (P < 0.01). These results indicated biochar played significant roles in carbon loss and greenhouse emissions caused by biogas residue incorporation during composting.
Collapse
Affiliation(s)
- Xu Lin
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Nanyi Wang
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Fanghong Li
- College of Resources and Environment, Hunan Agricultural University, 410128, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shilin Jiang
- College of Resources and Environment, Hunan Agricultural University, 410128, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| | - Hua Peng
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Genyi Wu
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, 410128, China.
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| |
Collapse
|
19
|
Potential for Biomethanisation of CO2 from Anaerobic Digestion of Organic Wastes in the United Kingdom. Processes (Basel) 2022. [DOI: 10.3390/pr10061202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The United Kingdom (UK) has a decarbonisation strategy that includes energy from both hydrogen and biomethane. The latter comes from the growing anaerobic digestion (AD) market, which in 2020 produced 23.3 TWh of energy in the form of biogas. According to the strategy, this must be upgraded to biomethane by removal of carbon dioxide (CO2): a goal that could also be fulfilled through CO2 biomethanisation, alleviating the need for carbon capture and storage. Results are presented from a survey of publicly available datasets coupled with modelling to identify potential scale and knowledge gaps. Literature data were used to estimate maximum biomethane concentrations by feedstock type: these ranged from 79% for food wastes to 93% for livestock manures. Data from various government sources were used to estimate the overall potential for CO2 biomethanisation with current AD infrastructure. Values for the uplift in biomethane production ranged from 57% to 61%, but the need for more consistent data collection methodologies was highlighted. On average, however, if CO2 biomethanisation was applied in all currently operating UK AD plants an energy production uplift of 12,954 GWh could be achieved based on 2020 figures. This is sufficient to justify the inclusion of CO2 biomethanisation in decarbonisation strategies, in the UK and worldwide.
Collapse
|
20
|
Antukh T, Lee I, Joo S, Kim H. Hydrogenotrophs-Based Biological Biogas Upgrading Technologies. Front Bioeng Biotechnol 2022; 10:833482. [PMID: 35557857 PMCID: PMC9085624 DOI: 10.3389/fbioe.2022.833482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Biogas produced from anaerobic digestion consists of 55–65% methane and 35–45% carbon dioxide, with an additional 1–2% of other impurities. To utilize biogas as renewable energy, a process called biogas upgrading is required. Biogas upgrading is the separation of methane from carbon dioxide and other impurities, and is performed to increase CH4 content to more than 95%, allowing heat to be secured at the natural gas level. The profitability of existing biogas technologies strongly depends on operation and maintenance costs. Conventional biogas upgrading technologies have many issues, such as unstable high-purity methane generation and high energy consumption. However, hydrogenotrophs-based biological biogas upgrading offers an advantage of converting CO2 in biogas directly into CH4 without additional processes. Thus, biological upgrading through applying hydrogenotrophic methanogens for the biological conversion of CO2 and H2 to CH4 receives growing attention due to its simplicity and high technological potential. This review analyzes the recent advance of hydrogenotrophs-based biomethanation processes, addressing their potential impact on public acceptance of biogas plants for the promotion of biogas production.
Collapse
Affiliation(s)
| | | | - Sunghee Joo
- *Correspondence: Sunghee Joo, ; Hyunook Kim,
| | - Hyunook Kim
- *Correspondence: Sunghee Joo, ; Hyunook Kim,
| |
Collapse
|
21
|
Gupta VK, Nguyen QD, Liu S, Taherzadeh MJ, Sirohi R. Microbes in valorisation of biomass to value-added products. BIORESOURCE TECHNOLOGY 2022; 347:126738. [PMID: 35051569 DOI: 10.1016/j.biortech.2022.126738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Vijai K Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom; Centerfor Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom.
| | - Quang D Nguyen
- Hungarian University of Agriculture and Life Sciences, Hungary
| | - Shijie Liu
- State University of New York College of Environmental Science and Forestry, United States
| | | | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| |
Collapse
|