1
|
Zhou Z, Xia L, Wang X, Wu C, Liu J, Li J, Lu Z, Song S, Zhu J, Montes ML, Benzaazoua M. Coal slime as a good modifier for the restoration of copper tailings with improved soil properties and microbial function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109266-109282. [PMID: 37759064 DOI: 10.1007/s11356-023-30008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
In recent years, the solid wastes from the coal industry have been widely used as soil amendments. Nevertheless, the impact of utilizing coal slime for copper tailing restoration in terms of plant growth, physicochemical characteristics of the tailing soil, and microbial succession remains uncertain.Herein, the coal slime was employed as a modifier into copper tailings. Their effect on the growth and physiological response of Ryegrass, and the soil physicochemical properties as well as the bacterial community structure were investigated. The results indicated that after a 30-day of restoration, the addition of coal slime at a ratio of 40% enhanced plant growth, with a 21.69% rise in chlorophyll content, and a 62.44% increase in peroxidase activity. The addition of 40% coal slime also increased the content of nutrient elements in copper tailings. Following a 20-day period of restoration, the concentrations of available copper and available zinc in the modified tailings decreased by 39.6% and 48.51%, respectively, with 40% of coal slime added. In the meantime, there was an observed augmentation in the species diversity of the bacterial community in the modified tailings. The alterations in both community structure and function were primarily influenced by variations in pH value, available nitrogen, phosphorus, potassium, and available copper. The addition of 40% coal slime makes the physicochemical properties and microbial community evolution of copper tailings reach a balance point. The utilization of coal slime has the potential to enhance the physicochemical characteristics of tailings and promote the proliferation of microbial communities, hence facilitating the soil evolution of two distinct solid waste materials. Consequently, the application of coal slime in the restoration of heavy metal tailings is a viable approach, offering both cost-effectiveness and efficacy as an enhancer.
Collapse
Affiliation(s)
- Zhou Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Ling Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China.
| | - Xizhuo Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Chenyu Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jiazhi Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jianbo Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
- Instituto de Física de la Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, Mexico
| | - Zijing Lu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jiang Zhu
- Hubei Sanxin Gold Copper Limited Company, Huangshi, Hubei, China
| | | | - Mostafa Benzaazoua
- Mohammed VI Polytechnic University (UM6P), Geology and Sustainable Mining, Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| |
Collapse
|
2
|
Yu J, Gu J, Wang X, Lei L, Guo H, Song Z, Sun W. Exploring the mechanism associated with methane emissions during composting: Inoculation with lignocellulose-degrading microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116421. [PMID: 36308953 DOI: 10.1016/j.jenvman.2022.116421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Inoculation with microorganisms is an effective strategy for improving traditional composting processes. This study explored the effects of inoculation with lignocellulose-degrading microorganisms (LDM) on the degradation of organic matter (OM), methane (CH4) emissions, and the microbial community (bacteria and methanogens) during composting. The results showed that LDM accelerated the degradation of OM (including the lignocellulose fraction) and increased the CH4 releases in the later thermophilic and cooling stages during composting. At the ending of composting, LDM increased the CH4 emissions by 38.6% compared with the control. Moreover, LDM significantly increased the abundances of members of the bacterial and methanogenic community during the later thermophilic period (P < 0.05). In addition, LDM promoted the growth and activity of major bacterial genera (e.g., Ureibacillus) with the ability to degrade macromolecular OM, as well as affecting key methanogens (e.g., Methanocorpusculum) in the composting system. Network analysis and variance partitioning analysis indicated that OM and temperature were the main factors that affected the bacterial and methanogen community structures. Structural equation modeling demonstrated that the higher CH4 emissions under LDM were related to the growth of methanogens, which was facilitated by the anaerobic environment produced by large amounts of CO2. Thus, aerobic conditions should be improved during the end of the thermophilic and cooling composting period when inoculating with lignocellulose-degrading microorganisms in order to reduce CH4 emissions.
Collapse
Affiliation(s)
- Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
3
|
Maslova O, Senko O, Stepanov N, Gladchenko M, Gaydamaka S, Akopyan A, Eseva E, Anisimov A, Efremenko E. Sulfur containing mixed wastes in anaerobic processing by new immobilized synthetic consortia. BIORESOURCE TECHNOLOGY 2022; 362:127794. [PMID: 35987436 DOI: 10.1016/j.biortech.2022.127794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Methanogenic biotransformation of unusual substrates (sulfur (S)-containing wastes: non-purified vacuum gas oil, straight-run gasoline fraction (Naphtha), gas condensate, and straight-run diesel fraction) coming from oil industry after their oxidative desulfurization was investigated. Nitrogen-containing wastes (hydrolysates of chicken manure and Chlorella vulgaris biomass) were added as co-substrates to mixture with oil industry wastes. The 100 % conversion of S-organic compounds to inorganic sulfide accumulated in the reaction liquid medium was achieved with simultaneous production of biogas containing high methane percent (greater than 70 %). Polishing of effluents from methane tank was carried out by denitrifying oxidation of ammonium (DEAMOX). The high process efficiency was due to use of original immobilized artificial consortia at the stage of methanogenesis and DEAMOX. This study reveals the real potential in the processing of very complex mixtures of large-scale wastes, usually inhibiting methanogenesis, by developing biocatalysts based on synthetic biology approaches.
Collapse
Affiliation(s)
- Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Marina Gladchenko
- Faculty of Chemistry, Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Sergey Gaydamaka
- Faculty of Chemistry, Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Argam Akopyan
- Faculty of Chemistry, Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Ekaterina Eseva
- Faculty of Chemistry, Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Alexander Anisimov
- Faculty of Chemistry, Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia.
| |
Collapse
|
4
|
Sohail M, Khan A, Badshah M, Degen A, Yang G, Liu H, Zhou J, Long R. Yak rumen fluid inoculum increases biogas production from sheep manure substrate. BIORESOURCE TECHNOLOGY 2022; 362:127801. [PMID: 35995345 DOI: 10.1016/j.biortech.2022.127801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Hydrolytic bacteria are essential for the degradation of lignocellulose to produce biogas and organic fertilizers. In this study, sheep manure was used as substrate, and sheep manure slurry, yak rumen fluid and slurry from a biogas reactor (SBR) were used as inocula in single-stage anaerobic digestion. The SBR and rumen fluid inocula increased biogas production by 23% and 43%, respectively, when compared to solely sheep manure in the single-stage anaerobic digestion. The two-stage anaerobic digestion, with yak rumen fluid as inoculum in the hydrolytic reactor, increased the biogas production by 59, 86, and 58% compared with the control. Microbial analysis of the effluent revealed that yak rumen fluid contained hydrolytic bacteria such as Proteiniphilum, Jeotgalibaca, Fermentimonas, and Atopostipes to enhance the degradation of sheep manure and increase biogas production. It was concluded that yak rumen fluid, rich in hydrolytic bacteria, increases the degradability of sheep manure and improves production of volatile fatt acids and biogas.
Collapse
Affiliation(s)
- Muhammad Sohail
- State Key Laboratory of Grassland Agro-ecosystem, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Alam Khan
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Malik Badshah
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel
| | - Guo Yang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000 China
| | - Hu Liu
- State Key Laboratory of Grassland Agro-ecosystem, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianwei Zhou
- State Key Laboratory of Grassland Agro-ecosystem, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Ruijun Long
- State Key Laboratory of Grassland Agro-ecosystem, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Biogas Production Enhancement through Chicken Manure Co-Digestion with Pig Fat. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chicken manure and pig fat are found abundantly around the globe, and there is a challenge to get rid of them. This waste has considerable energy potential to be recovered into fuel, but extracting this energy from some by-products, especially fat, isn’t an easy task. When anaerobic digestion technology stepped to the level of anaerobic co-digestion, the utilisation of hardly degradable waste became feasible. Our research was conducted on anaerobic co-digestion of chicken manure as the primary substrate with pig fat as a fat reach supplement in a semi-continuous mode at different organic load rates. The influence of fat waste on the process of biogas production from chicken manure and the composition of the obtained products was determined using an organic load rate of 3.0–4.5 kg VS·(m3·day)−1. A sturdy and continuously growing biogas production was observed at all organic load rates, implying the synergetic effect on chicken manure and pig fat co-digestion. The highest specific methane yield, 441.3 ± 7.6 L·kg VS−1, was observed at an organic load rate of 4.5 kg VS·(m3·day)−1. The research results showed that co-digestion of chicken manure with pig fat is an appropriate measure for fat utilisation and contributes to the increase in biogas yield, methane concentration, and overall methane yield at investigated organic load rates.
Collapse
|
6
|
Yu C, Li M, Zhang B, Xin Y, Tan W, Meng F, Hou J, He X. Hydrothermal pretreatment contributes to accelerate maturity during the composting of lignocellulosic solid wastes. BIORESOURCE TECHNOLOGY 2022; 346:126587. [PMID: 34933104 DOI: 10.1016/j.biortech.2021.126587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The aim of this work was to study the optimal conditions and mechanism of lignocellulose degradation in the hydrothermal pretreatment coupled with aerobic fermentation (HTPAF). The optimized process parameters in the hydrothermal pretreatment (HTP) were discussed. The response relationship between enzyme activity and microbial community in HTPAF were explored. The results showed that with the moisture content of 50%-90%, the lignin content decreased by 150 mg/g after treatment at 120 °C for 6 h, and a loose pore structure was formed on the surface of the chestnut shells after HTP. The compost maturity time was shortened to 12 days. The dominant microbial genera in HTPAF were Gallicola, Moheibacter and Atopostipes, which were significant different with that of the traditional composting. HTPAF is beneficial to increase the maximum temperature of aerobic fermentation and quickly degrade lignin to shorten the maturity time.
Collapse
Affiliation(s)
- Chengze Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Bin Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanhua Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|