1
|
Zulfahmi I, Batubara AS, Perdana AW, Rahmah A, Nafis B, Ali R, Nasution AW, Iqbal TH, Nur FM, Sari W, Sumon KA, Rahman MM. Chronic exposure to palm oil mill effluent induces oxidative stress and histopathological changes in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137844. [PMID: 40054186 DOI: 10.1016/j.jhazmat.2025.137844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 04/16/2025]
Abstract
Several studies have revealed that Palm Oil Mill Effluent (POME) adversely affects fish health systems in various ways. However, further studies on oxidative stress and histopathological changes in fish tissues exposed to POME are essential so that a more comprehensive and detailed understanding of its toxicity is attained. Subsequently, this study investigated oxidative stress indicators, including malondialdehyde (MDA) content and activities of antioxidant enzymes, as well as histological changes in zebrafish (Danio rerio) tissues after chronic exposure to POME. The results showed a significant increase in MDA content by up to 122 % in gills and 351 % in liver, while catalase (CAT) activity rose by 70 % in gills and 170 % in liver. Glutathione S-transferase (GST) activity was significantly reduced by 50 % in both tissues, while superoxide dismutase (SOD) activity increased by 162 % in the liver, yet showed no significant change in gills. Histological analysis revealed mild to severe alterations in gills (e.g., hyperplasia, hypertrophy, hemorrhage, and necrosis) and liver (e.g., hepatocyte shrinkage, congestion, hydropic degeneration, and necrosis) at higher POME concentrations and longer exposure durations. These findings suggest that oxidative stress markers and histopathological changes potentially serve as early warning indicators for: firstly, assessing POME contamination in aquatic environments; and secondly, evaluating the effectiveness of wastewater treatment systems.
Collapse
Affiliation(s)
- Ilham Zulfahmi
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia.
| | - Agung Setia Batubara
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Kota Medan, Sumatera Utara 20221, Indonesia
| | - Adli Waliul Perdana
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Alvi Rahmah
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Badratun Nafis
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Rizwan Ali
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Ayu Wulandari Nasution
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Teuku Haris Iqbal
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Firman M Nur
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Widya Sari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Kizar Ahmed Sumon
- Department of Fisheries management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
2
|
Thegarathah P, Jewaratnam J, Simarani K, Elgharbawy AA. Aspergillus niger as an efficient biological agent for separator sludge remediation: two-level factorial design for optimal fermentation. PeerJ 2024; 12:e17151. [PMID: 39026538 PMCID: PMC11257062 DOI: 10.7717/peerj.17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/03/2024] [Indexed: 07/20/2024] Open
Abstract
Background The booming palm oil industry is in line with the growing population worldwide and surge in demand. This leads to a massive generation of palm oil mill effluent (POME). POME is composed of sterilizer condensate (SC), separator sludge (SS), and hydro-cyclone wastewater (HCW). Comparatively, SS exhibits the highest organic content, resulting in various environmental impacts. However, past studies mainly focused on treating the final effluent. Therefore, this pioneering research investigated the optimization of pollutant removal in SS via different aspects of bioremediation, including experimental conditions, treatment efficiencies, mechanisms, and degradation pathways. Methods A two-level factorial design was employed to optimize the removal of chemical oxygen demand (COD) and turbidity using Aspergillus niger. Bioremediation of SS was performed through submerged fermentation (SmF) under several independent variables, including temperature (20-40 °C), agitation speed (100-200 RPM), fermentation duration (72-240 h), and initial sample concentration (20-100%). The characteristics of the treated SS were then compared to that of raw sludge. Results Optimal COD and turbidity removal were achieved at 37 °C 100 RPM, 156 h, and 100% sludge. The analysis of variance (ANOVA) revealed a significant effect of selective individual and interacting variables (p < 0.05). The highest COD and turbidity removal were 97.43% and 95.11%, respectively, with less than 5% error from the predicted values. Remarkably, the selected optimized conditions also reduced other polluting attributes, namely, biological oxygen demand (BOD), oil and grease (OG), color, and carbon content. In short, this study demonstrated the effectiveness of A. niger in treating SS through the application of a two-level factorial design.
Collapse
Affiliation(s)
| | | | - Khanom Simarani
- Division of Microbiology, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Amal A.M. Elgharbawy
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Kuala Lumpur, Malaysia
- Department of Chemical Engineering and Sustainability, International Islamic University Malaysia, Gombak, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Aryanti PTP, Nugroho FA, Anwar N, Rusgiyarto F, Phalakornkule C, Kadier A. Integrated bipolar electrocoagulation and PVC-based ultrafiltration membrane process for palm oil mill effluent (POME) treatment. CHEMOSPHERE 2024; 347:140637. [PMID: 37952820 DOI: 10.1016/j.chemosphere.2023.140637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/02/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
In this study, the effectiveness of integrating electrocoagulation (EC) and ultrafiltration (UF) membranes for palm oil mill effluent (POME) wastewater treatment was investigated. The impact of various parameters on contaminant removal efficiency, including electrode configuration (monopolar and bipolar), number of anodes, agitation rate, and current density, was studied. The findings demonstrated that using bipolar (BP) electrodes in the EC reactor improved coagulation efficiency. However, an increase in agitation rate led to a decrease in removal efficiency. The electrode configuration of 2A-2C-2B achieved high contaminant removal with a lower electrode consumption compared to the 4A-2C and 4A-2C-2B configurations. The removal efficiencies for total dissolved solids (TDS), total suspended solids (TSS), chemical oxygen demand (COD), and biological oxygen demand (BOD) were 59.1%, 99.9%, 96.8%, and 96%, respectively. The operating cost for the electrode configuration of 2A-2C-2B was estimated to be 2.71 US$ m-3 at an effluent capacity of 50 m3 d-1 and 20 h d-1 of operating time, while the energy requirement was 6.20 kWh m-3. An increase in operating time from 5 to 24 h d-1 raised the specific operating cost from 2.17 to 2.85 US$ m-3. This study provides valuable insights into optimizing EC and UF processes for POME wastewater treatment, which could have significant implications for sustainable industrial practices.
Collapse
Affiliation(s)
- Putu Teta Prihartini Aryanti
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia.
| | - Febrianto Adi Nugroho
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Nadiem Anwar
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Ferry Rusgiyarto
- Civil Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Chantaraporn Phalakornkule
- Department of Chemical Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand; Research Center for Circular Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Meena R AA, J M, Banu J R, Bhatia SK, Kumar V, Piechota G, Kumar G. A review on the pollution assessment of hazardous materials and the resultant biorefinery products in Palm oil mill effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121525. [PMID: 37062401 DOI: 10.1016/j.envpol.2023.121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/18/2023] [Accepted: 03/26/2023] [Indexed: 05/09/2023]
Abstract
The voluminous nature of palm oil mill effluent (POME) is directly associated with environmental hazards and could be turned into biorefinery products. The POME, rich in BOD, COD, and oil and grease, with few hazardous materials such as siloxanes, fatty acid methyl ester, and phenolic compounds that may significantly increase the risk of violating the effluent quality standards. Recently, the application of chemical and biological risk assessment that can use electrochemical sensors and microalgae-like species has gained paramount attention towards its remediation. This review describes the existing risk assessment for POME and recommends a novel assessment approach using fish species including invasive ones as suitable for identifying the toxicants. Various physico-chemical and biological treatments such as adsorption, coagulation-flocculation, photo-oxidation, solar-assisted extraction, anaerobic digestion, integrated anaerobic-aerobic, and microalgae cultivation has been investigated. This paper offers an overview of anaerobic technologies, with particular emphasis on advanced bioreactors and their prospects for industrial-level applications. To illustrate, palmitic acid and oleic acid, the precursors of fatty acid methyl ester found in POME pave the way to produce biodiesel with 91.45%. Although there are some challenges in attaining production at an economic scale, this review offers some opportunities that could help in overcoming these challenges.
Collapse
Affiliation(s)
- Anu Alias Meena R
- Department of Environmental Sciences, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Merrylin J
- Department of Nutrition and Dietetics, Sadakathullah Appa College, Tirunelveli, 627011, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamilnadu, Neelakudi, Thiruvarur, 610005, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, MK43 0AL, Cranfield, United Kingdom
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100, Toruń, Poland
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, 4036, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
5
|
Norfarhana A, Ilyas R, Ngadi N, Sharma S, Sayed MM, El-Shafay A, Nordin A. Natural Fiber-Reinforced Thermoplastic ENR/PVC Composites as Potential Membrane Technology in Industrial Wastewater Treatment: A Review. Polymers (Basel) 2022; 14:2432. [PMID: 35746008 PMCID: PMC9228183 DOI: 10.3390/polym14122432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Membrane separation processes are prevalent in industrial wastewater treatment because they are more effective than conventional methods at addressing global water issues. Consequently, the ideal membranes with high mechanical strength, thermal characteristics, flux, permeability, porosity, and solute removal capacity must be prepared to aid in the separation process for wastewater treatment. Rubber-based membranes have shown the potential for high mechanical properties in water separation processes to date. In addition, the excellent sustainable practice of natural fibers has attracted great attention from industrial players and researchers for the exploitation of polymer composite membranes to improve the balance between the environment and social and economic concerns. The incorporation of natural fiber in thermoplastic elastomer (TPE) as filler and pore former agent enhances the mechanical properties, and high separation efficiency characteristics of membrane composites are discussed. Furthermore, recent advancements in the fabrication technique of porous membranes affected the membrane's structure, and the performance of wastewater treatment applications is reviewed.
Collapse
Affiliation(s)
- A.S. Norfarhana
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (A.N.); (N.N.); (A.N.)
- Department of Petrochemical Engineering, Politeknik Tun Syed Nasir Syed Ismail, Pagoh Education Hub, Pagoh Muar 84600, Johor, Malaysia
| | - R.A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (A.N.); (N.N.); (A.N.)
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - N. Ngadi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (A.N.); (N.N.); (A.N.)
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, Punjab, India;
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Main Campus-Kapurthala, Kapurthala 144603, Punjab, India
| | - Mohamed Mahmoud Sayed
- Architectural Engineering, Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11845, Egypt;
| | - A.S. El-Shafay
- Department of Mechanical Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Alkharj 16273, Saudi Arabia
| | - A.H. Nordin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (A.N.); (N.N.); (A.N.)
| |
Collapse
|
6
|
Mohamad Z, Razak AA, Krishnan S, Singh L, Zularisam A, Nasrullah M. Treatment of palm oil mill effluent using electrocoagulation powered by direct photovoltaic solar system. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Development of a Novel Adsorbent Prepared from Dredging Sediment for Effective Removal of Dye in Aqueous Solutions. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study proposed a novel and low-cost adsorbent prepared from dredging sediment (DSD) for effective removal of dye in aqueous solutions. The adsorption efficiency and behavior of the DSD adsorbent toward the crystal violet (CV), a cationic dye, were investigated via batch experiments. The results showed that DSD samples contain mainly clay minerals (illite and kaolinite) and other mineral phases. In addition, DSD is a mesoporous material (Vmesopore = 94.4%), and it exhibits a relatively high surface area (~39.1 m2/g). Adsorption experiments showed that the solution’s pH slightly affects the adsorption process, and a pH of 11 gave a maximum capacity of 27.2 mg/g. The kinetic data of CV dye adsorption is well described by the pseudo–second-order and the Avrami models. The Langmuir and Liu isotherm models provide the best fit for the adsorption equilibrium data. The monolayer adsorption capacity of Langmuir reached 183.6, 198.0, and 243.6 mg/g at 293, 308, and 323 K, respectively. It was also found that the adsorption process was spontaneous (−ΔG°), exothermic (−∆H°), and increased the randomness (+∆S°) during the adsorption operation. The primary mechanisms in CV dye adsorption were ion exchange and pore filling, whereas electrostatic attraction was a minor contribution. In addition, three steps involving intraparticle diffusion occur at the same time to control the adsorption process. The results of this study highlight the excellent efficiency of DSD material as an ecofriendly sorbent for toxic dyes from water media.
Collapse
|