1
|
Jiang CY, Feng XC, Shi HT, Gao SH, Wang WQ, Xiao ZJ, Ren NQ. A feasible regulation strategy for conjugation of antibiotic resistance genes based on different bacterial quorum sensing inhibition methods. WATER RESEARCH 2025; 272:122958. [PMID: 39700835 DOI: 10.1016/j.watres.2024.122958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
The dissemination of antibiotic resistance genes (ARGs) poses global environmental issues, and plasmid-mediated conjugation contributes substantially to the spread of ARGs. Quorum sensing (QS), an important cell-cell communication system that coordinates group behaviors, has potential as a feasible regulation pathway to inhibit the conjugation process. We examined the promoting effects of QS signal on conjugation, and this study is the first to report that QS inhibitors 2(3H)-benzofuranone and acylase I effectively repressed conjugation frequency of RP4 plasmid to 0.32- and 0.13-fold compared with the control respectively. The investigation of underlying mechanisms of QS inhibitors revealed a significant decrease in cellular contact and the formation of transfer channels. The downregulation of sdiA gene regulating the expression of QS signal receptor contribute to conjugation inhibition. Importantly, the expression of genes related to the formation of conjugative pili, which plays a role in plasmid mating bridge formation was downregulated, indicating QS inhibitors affect conjugation mainly through regulation of the mating pair formation system. Furthermore, 2(3H)-benzofuranone and acylase I achieved 84.07% and 66.05% inhibitory effect on plasmid spread in activated sludge reactors. Collectively, our findings demonstrate the feasibility of using different bacteria quorum quenching methods to control the spread of ARGs.
Collapse
Affiliation(s)
- Chen-Yi Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China.
| | - Hong-Tao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Wen-Qian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Zi-Jie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| |
Collapse
|
2
|
Shan T, Wang B, Tu W, Huang F, Yang W, Xiang M, Luo X. Adsorption and biodegradation of butyl xanthate in mine water by Pseudomonas sp. immobilized on yak dung biochar. ENVIRONMENTAL RESEARCH 2025; 264:120300. [PMID: 39515552 DOI: 10.1016/j.envres.2024.120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The butyl xanthate (BX) in mining wastewater poses significant environmental challenges due to its toxicity and persistence. This study aimed to evaluate the effectiveness of Pseudomonas sp. immobilized on yak dung biochar (Ps.@YDBC600) for BX degradation, emphasizing the synergistic effects of biochar adsorption and microbial degradation. BX removal efficiency of free Pseudomonas sp. cells was assessed under various environmental conditions, with optimal degradation observed at 30 °C and an initial pH of 5.0. Yak dung biochar prepared at 600 °C (YDBC600) was selected due to its high surface area, porosity, and favorable adsorption properties, enhancing the immobilization and activity of Pseudomonas sp. The absorption of BX by biochar followed a two-compartment first-order kinetic model and primarily involved hydrogen bonding, hydrophobic interactions, and pore filling. The primary crystalline mineral component of YDBC600 and Ps.@YDBC600 before and after the adsorption and degradation of BX was SiO₂. The Ps.@YDBC600 was shown to significantly enhance BX removal efficiency compared to free Pseudomonas sp. cells or biochar alone. Molecular studies indicated that biochar facilitated BX degradation by providing a stable environment for Pseudomonas sp. and optimizing metabolic resource allocation. The primary by-products, including CS₂, HS-, ROCOS-, ROCSSH and (ROCSS)₂ were effectively minimized (each by-product was reduced more than 80%), reducing secondary pollution. These findings demonstrated the potential of Pseudomonas sp. immobilized on biochar as an effective approach for treating BX-contaminated mining wastewater, offering a sustainable approach to environmental remediation and management.
Collapse
Affiliation(s)
- Tingqian Shan
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China.
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan, 610015, People's Republic of China.
| | - Fuyang Huang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Wenguang Yang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Mengyang Xiang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Xuemei Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan, 610015, People's Republic of China
| |
Collapse
|
3
|
Wang S, Li W, Xi B, Cao L, Huang C. Mechanisms and influencing factors of horizontal gene transfer in composting system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177017. [PMID: 39427888 DOI: 10.1016/j.scitotenv.2024.177017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Organic solid wastes such as livestock manure and sewage sludge are important sources and repositories of antibiotic resistance genes (ARGs). Composting, a solid waste treatment technology, has demonstrated efficacy in degrading various antibiotics and reducing ARGs. However, some recalcitrant ARGs (e.g., sul1, sul2) will enrich during the composting maturation period. These ARGs persist in compost products and spread through horizontal gene transfer (HGT). We analyzed the reasons behind the increase of ARGs during the maturation phase. It was found that the proliferation of ARG-host bacteria and HGT process play an important role. This article revealed that microbial physiological responses, environmental factors, pollutants, and quorum sensing (QS) can all influence the HGT process in composting systems. We examined the influence of these factors on HGT in the compost system and summarized potential mechanisms by analyzing the alterations in microbial communities. We comprehensively summarized the HGT hazards that these factors may present in composting systems. Finally, we summarized methods to inhibit HGT in compost, such as using additives, quorum sensing inhibitors (QSIs), microbial inoculation, and predicting HGT events. Overall, the HGT mechanism and driving force in complex composting systems are still insufficiently studied. In view of the current situation, using predictions to assess the risk of HGT in composting may be advisable.
Collapse
Affiliation(s)
- Simiao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lijia Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Tu X, Yin B, Kang J, Wu Z, Guo Y, Ao G, Sun Y, Ge J, Ping W. Potassium persulfate enhances humification of chicken manure and straw composting: The perspective of rare and abundant microbial community structure and ecological interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175162. [PMID: 39084372 DOI: 10.1016/j.scitotenv.2024.175162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/05/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Improper disposal of organic solid waste results in serious environmental pollution. Aerobic composting provides an environmentally friendly treatment method, but improving humification of raw materials remains a challenge. This study revealed the effect of different concentrations of potassium persulfate (PP) on humification of chicken manure and straw aerobic composting and the underlying microbial mechanisms. The results showed that when 0.6 % PP was added (PPH group), humus and the degree of polymerization were 80.77 mg/g and 2.52, respectively, which were significantly higher than those in 0.3 % PP (PPL group). As the concentration of PP was increased, the composition of rare taxa (RT) changed and improved in evenness, while abundant taxa (AT) was unaffected. Additionally, the density (0.037), edges (3278), and average degree (15.21) in the co-occurrence network decreased compared to PPL, while the average path (4.021) and modularity increased in PPH. This resulted in facilitating the turnover of matter, information, and energy among the microbes. Interestingly, cooperative behavior between microorganisms during the maturation period (24-60 d) occurred in PPH, but competitive relationships dominated in PPL. Cooperative behavior was positively correlated with humus (p < 0.05). Because the indices, such as higher degree, betweenness centrality, eigenvector centrality, and closeness centrality of the AT, were located in the microbial network center compared to RT, they were unaffected by the concentration of PP. The abundance of carbohydrate and amino acid metabolic pathways, which play an important role in humification, were higher in PPH. These findings contribute to understanding the relative importance of composition, interactions, and metabolic functionality of RT and AT on humification during chicken manure and straw aerobic composting under different concentrations of PP, as well as provide a basic reference for use of various conditioning agents to promote humification of organic solid waste.
Collapse
Affiliation(s)
- Xiujun Tu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bo Yin
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zhenchao Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yuhao Guo
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Guoxu Ao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
5
|
Mao L, Kang J, Sun R, Liu J, Ge J, Ping W. Ecological succession of abundant and rare subcommunities during aerobic composting in the presence of residual amoxicillin. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133456. [PMID: 38211525 DOI: 10.1016/j.jhazmat.2024.133456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Aerobic composting increases the content of soluble nutrients and facilitates the safe treatment of livestock manure. Although different taxa play crucial roles in maintaining ecological functionality, the succession patterns of community composition and assembly of rare and abundant subcommunities during aerobic composting under antibiotic stress and their contributions to ecosystem functionality remain unclear. Therefore, this study used 16 S rRNA gene sequencing technology to reveal the response mechanisms of diverse microbial communities and the assembly processes of abundant and rare taxa to amoxicillin during aerobic composting. The results indicated that rare taxa exhibited distinct advantages in terms of diversity, community composition, and ecological niche width compared with abundant taxa, highlighting their significance in maintaining ecological community dynamics. In addition, deterministic (heterogeneous selection) and stochastic processes (dispersal limitation) play roles in the community succession and functional dynamics of abundant and rare subcommunities. The findings of this study may contribute to a better understanding of the relative importance of deterministic and stochastic assembly processes in composting systems, and the ecological functions of diverse microbial communities, ultimately leading to improved ecological environment.
Collapse
Affiliation(s)
- Liangyang Mao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Rui Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jiaxin Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| |
Collapse
|
6
|
Zhao R, Han B, Yang F, Zhang Z, Sun Y, Li X, Liu Y, Ding Y. Analysis of extracellular and intracellular antibiotic resistance genes in commercial organic fertilizers reveals a non-negligible risk posed by extracellular genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120359. [PMID: 38359629 DOI: 10.1016/j.jenvman.2024.120359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/12/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Livestock manure is known to be a significant reservoir of antibiotic resistance genes (ARGs), posing a major threat to human health and animal safety. ARGs are found in both intracellular and extracellular DNA fractions. However, there has been no comprehensive analysis of these fractions in commercial organic fertilizers (COFs). The present study conducted a systematic survey of the profiles of intracellular ARGs (iARGs) and extracellular ARGs (eARGs) and their contributing factor in COFs in Northern China. Results showed that the ARG diversity in COFs (i.e., 57 iARGs and 53 eARGs) was significantly lower than that in cow dung (i.e., 68 iARGs and 69 eARGs). The total abundance of iARGs and eARGs decreased by 85.7% and 75.8%, respectively, after compost processing, and there were no significant differences between iARGs and eARGs in COFs (P > 0.05). Notably, the relative abundance of Campilobacterota decreased significantly (99.1-100.0%) after composting, while that of Actinobacteriota and Firmicutes increased by 21.1% and 29.7%, respectively, becoming the dominant bacteria in COFs. Co-occurrence analysis showed that microorganisms and mobile genetic elements (MGEs) were more closely related to eARGs than iARGs in COFs. And structural equation models (SEMs) further verified that microbial community was an essential factor regulating iARGs and eARGs variation in COFs, with a direct influence (λ = 0.74 and 0.62, P < 0.01), following by similar effects of MGEs (λ = 0.59 and 0.43, P < 0.05). These findings indicate the need to separate eARGs and iARGs when assessing the risk of dissemination and during removal management in the environment.
Collapse
Affiliation(s)
- Ran Zhao
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Bingjun Han
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fengxia Yang
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Zulin Zhang
- The James Hutton Institute, Aberdeen AB15 8QH, UK
| | - Yutao Sun
- Tianjin Zhongtao Earthworm Breeding Professional Cooperative, Tianjin 300191, China
| | - Xue Li
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yiming Liu
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongzhen Ding
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
7
|
Feng M, Liu Y, Yang L, Li Z. Antibiotics and antibiotic resistance gene dynamics in the composting of antibiotic fermentation waste - A review. BIORESOURCE TECHNOLOGY 2023; 390:129861. [PMID: 37863331 DOI: 10.1016/j.biortech.2023.129861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Fate of antibiotics and antibiotic resistance genes (ARGs) during composting of antibiotic fermentation waste (AFW) is a major concern. This review article focuses on recent literature published on this subject. The key findings are that antibiotics can be removed effectively during AFW composting, with higher temperatures, appropriate bulking agents, and suitable pretreatments improving their degradation. ARGs dynamics during composting are related to bacteria and mobile genetic elements (MGEs). Higher temperatures, suitable bulking agents and an appropriate C/N ratio (30:1) lead to more efficient removal of ARGs/MGEs by shaping the bacterial composition. Keeping materials dry (moisture less than 30%) and maintaining pH stable around 7.5 after composting could inhibit the rebound of ARGs. Overall, safer utilization of AFW can be realized by optimizing composting conditions. However, further removal of antibiotics and ARGs at low levels, degradation mechanism of antibiotics, and spread mechanism of ARGs during AFW composting require further investigation.
Collapse
Affiliation(s)
- Minmin Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yuanwang Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Lie Yang
- Wuhan University of Technology, School of Resources & Environmental Engineering, Wuhan 430070, China
| | - Zhaojun Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Li S, Li X, Chang H, Zhong N, Ren N, Ho SH. Comprehensive insights into antibiotic resistance gene migration in microalgal-bacterial consortia: Mechanisms, factors, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166029. [PMID: 37541493 DOI: 10.1016/j.scitotenv.2023.166029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
With the overuse of antibiotics, antibiotic resistance gene (ARG) prevalence is gradually increasing. ARGs are considered emerging contaminants that are broadly concentrated and dispersed in most aquatic environments. Recently, interest in microalgal-bacterial biotreatment of antibiotics has increased, as eukaryotes are not the primary target of antimicrobial drugs. Moreover, research has shown that microalgal-bacterial consortia can minimize the transmission of antibiotic resistance in the environment. Unfortunately, reviews surrounding the ARG migration mechanism in microalgal-bacterial consortia have not yet been performed. This review briefly introduces the migration of ARGs in aquatic environments. Additionally, an in-depth summary of horizontal gene transfer (HGT) between cyanobacteria and bacteria and from bacteria to eukaryotic microalgae is presented. Factors influencing gene transfer in microalgal-bacterial consortia are discussed systematically, including bacteriophage abundance, environmental conditions (temperature, pH, and nutrient availability), and other selective pressure conditions including nanomaterials, heavy metals, and pharmaceuticals and personal care products. Furthermore, considering that quorum sensing could be involved in DNA transformation by affecting secondary metabolites, current knowledge surrounding quorum sensing regulation of HGT of ARGs is summarized. In summary, this review gives valuable information to promote the development of practical and innovative techniques for ARG removal by microalgal-bacterial consortia.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Nianbing Zhong
- Liangjiang International College, Chongqing University of Technology, Chongqing 401135, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
9
|
Costa BF, Zarei-Baygi A, Md Iskander S, Smith AL. Antibiotic resistance genes fate during food waste management - Comparison between thermal treatment, hyperthermophilic composting, and anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2023; 388:129771. [PMID: 37739184 DOI: 10.1016/j.biortech.2023.129771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
The fate of eight different antibiotic resistance genes (ARGs) in food waste (sul1, sul2, tetO, tetW, ermF, ermB, ampC, oxa-1), intI1, and rpoB were monitored during thermal treatment (pyrolysis and incineration), hyperthermophilic composting, and anaerobic membrane bioreactor (AnMBR) treatment. ARGs in food waste ranged from 2.9 × 106 to 3.5 × 109 copies/kg with ampC being the least abundant and sul1 being the most abundant. Thermal treatment achieved removal below detection limits of all ARGs. Only two ARGs (sul1 and ampC) persisted in hyperthermophilic composting. While all genes except for ermB decreased in the AnMBR effluent relative to the food waste feed, sul1 remained at relatively high abundance. Biosolids on the contrary, accumulated tetO, ampC and sul2 in all tested operating conditions. Thermal treatment, despite limited resource recovery, provides the most effective mitigation of ARG risk in food waste.
Collapse
Affiliation(s)
- Bianca F Costa
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, USA
| | - Ali Zarei-Baygi
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, USA
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14(th) Ave N, Fargo, ND 58102, USA
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, USA.
| |
Collapse
|
10
|
Liu J, Gang S, Wang X, Sun S, Kang J, Ge J. Quorum sensing in different subcommunities becomes the key factor affecting the humification of the aerobic composting system with sauerkraut fermentation wastewater. BIORESOURCE TECHNOLOGY 2023; 387:129608. [PMID: 37544536 DOI: 10.1016/j.biortech.2023.129608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Aerobic composting is an effective and harmless method to treat Sauerkraut fermentation wastewater (SFW). Given the limited understanding of the effect of quorum sensing (QS) on humification in subcommunities under acidic environments, a large-scale analysis was conducted to identify features that impact the response of QS to humification in different subcommunities. The results showed that the addition of SFW directly affected humification in subcommunities A and C, and the abundances of functional genes related to carbon fixation and carbon degradation were significantly increased at 7 and 15 d, respectively. In addition, subcommunity B indirectly affected humus production but regulated carbon metabolic pathways such as glycolysis/gluconeogenesis and pentose phosphate by QS with subcommunities B. These findings provide a novel perspective for analysing the regulation of humification in aerobic composting and suggest that composting has potential applications in organic wastewater treatment.
Collapse
Affiliation(s)
- Jiaxin Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Song Gang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China
| | - Xu Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shanshan Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| |
Collapse
|
11
|
Duan Y, Awasthi MK, Yang J, Tian Y, Li H, Cao S, Syed A, Verma M, Ravindran B. Bacterial community dynamics and co-occurrence network patterns during different stages of biochar-driven composting. BIORESOURCE TECHNOLOGY 2023:129358. [PMID: 37336449 DOI: 10.1016/j.biortech.2023.129358] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Bacterial communities were dynamically tracked at four stages of biochar-driven sheep manure pile composting, and the co-occurrence networks with keystone taxa were established. The succession of bacterial community obvious varied during the composting process, Proteobacteria predominant in initial stage (39%) then shifted into Firmicutes in thermophilic (41%) and mesophilic (27%) stages, finally the maturation stage dominant by Bacteroidota (26%). Visualizations of bacterial co-occurrence networks demonstrate more cooperative mutualism and complex interactions in the thermophilic and mesophilic phases. Noticeably, the 7.5 and 10% biochar amended composts shown highest connections (736 and 663 total links) and positive cooperation (97.37 and 97.13% positive link) as well as higher closeness centrality and betweenness centrality of keystone taxa. Overall, appropriate biochar addition alters bacterial community succession and strengthens connection between keystone taxa and other bacteria, with 7.5 and 10% biochar amended composts has intense mutualistic symbiosis among bacterial communities.
Collapse
Affiliation(s)
- Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jianfeng Yang
- College of Resources Environment Science and Technology, Hubei University of Science and Technology, Xianning 437100, Hubei, China
| | - Yuan Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Huike Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Shan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- University Centre for Research & Development Department of Chemistry Chandigarh University Gharuan, Mohali, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| |
Collapse
|
12
|
Sun Y, Sun S, Pei F, Zhang C, Cao X, Kang J, Wu Z, Ling H, Ge J. Response characteristics of Flax retting liquid addition during chicken manure composting: Focusing on core bacteria in organic carbon mineralization and humification. BIORESOURCE TECHNOLOGY 2023; 381:129112. [PMID: 37137452 DOI: 10.1016/j.biortech.2023.129112] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
To explore the applicability of flax retting liquid (FRL) addition, the physicochemical properties, microbial community structure and function, carbon conversion and humus (HS) formation were assessed during chicken manure (CM) aerobic composting. Compared with the control group, the addition of FRL increased the temperature at thermophilic phase, while the microbial mass carbon content (MBC) in SCF and FRH groups raised to 96.1±0.25 g/Kg and 93.33±0.27 g/Kg, respectively. Similarly, FRL also improved the concent of humic acid (HA) to 38.44±0.85 g/Kg, 33.06±0.8 g/Kg, respcetively. However, fulvic acid (FA) decreased to 30.02±0.55g/Kg, 31.4±0.43 g/Kg, respectively and further reduced CO2 emissions. FRL influenced the relative abundance of Firmicutes at thermophilic phase and Ornithinimicrobium at maturity phase. Additionally, FRL strengthen the association among flora and reduce the number of bacteria, which was negative correlated with HA and positive with CO2 during composting. These findings offer powerful technological support for improving agricultural waste recycling.
Collapse
Affiliation(s)
- Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shanshan Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Chi Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xinbo Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zhenchao Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hongzhi Ling
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| |
Collapse
|
13
|
Wang M, Lian Y, Wang Y, Zhu L. The role and mechanism of quorum sensing on environmental antimicrobial resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121238. [PMID: 36758922 DOI: 10.1016/j.envpol.2023.121238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
As more environmental contaminants emerging, antibiotics and antibiotic resistance genes (ARGs) have caused a substantial increase of antimicrobial resistance (AMR) in environment. Quorum sensing (QS) is a bacterial cell-to-cell communication process that regulates many traits and gene expression, including ARGs and the related genes that contribute to AMR development. Herein, we summarize the role, physiology, and genetic mechanisms of bacterial QS in AMR development in the environment. First, the effect of QS on AMR is introduced. Next, the role of QS in bacterial physiological behaviors that promote AMR development, including membrane permeability, tactic movement, biofilm formation, persister formation, and small colony variants (SCVs), is systematically analyzed. Furthermore, the regulation of QS on the expression of ARGs, generation of reactive oxygen species (ROS), which affects ARGs formation, and horizontal gene transfer (HGT), which accelerates the transmission of ARGs, are discussed to reveal the molecular mechanism for AMR development. This review provides a reference for a better understanding of AMR evolution and novel insights into AMR prevention.
Collapse
Affiliation(s)
- Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Yulu Lian
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
14
|
Pei F, Cao X, Sun Y, Kang J, Ren Y, Ge J. Manganese dioxide eliminates the phytotoxicity of aerobic compost products and converts them into a plant friendly organic fertilizer. BIORESOURCE TECHNOLOGY 2023; 373:128708. [PMID: 36746215 DOI: 10.1016/j.biortech.2023.128708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
This study mainly confirmed the exogenous substances (pomace, biochar, MnO2) and the quorum sensing of bacterial communities jointly regulate the metabolic conversion of toxic substances in manures and agricultural wastes, and converts them into a plant-friendly organic fertilizer through aerobic composting and pot experiment. The results showed the composting products had positive performance in bacterial communities, physicochemical indicators, and phytotoxicity. Meanwhile, the addition of exogenous substances could significantly improve seed germination index, promote metabolites conversion, and optimize bacterial community structure. Furthermore, the exogenous substances mainly regulated the functions of the three bacterial communities by quorum sensing system, then promoted the beneficial metabolites, and inhibited the harmful metabolites. Finally, pot experiments suggested compost products could significantly promote plant growth. Thus, these important discoveries extend the knowledge of the previous work and provide an economical and simple method to convert wastes into organic fertilizers that are friendly to plants and soil.
Collapse
Affiliation(s)
- Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China; Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China
| | - Xinbo Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - YanXin Ren
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
15
|
Zhang L, Gao F, Ge J, Li H, Xia F, Bai H, Piao X, Shi L. Potential of Aromatic Plant-Derived Essential Oils for the Control of Foodborne Bacteria and Antibiotic Resistance in Animal Production: A Review. Antibiotics (Basel) 2022; 11:1673. [PMID: 36421318 PMCID: PMC9686951 DOI: 10.3390/antibiotics11111673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
Antibiotic resistance has become a severe public threat to human health worldwide. Supplementing antibiotic growth promoters (AGPs) at subtherapeutic levels has been a commonly applied method to improve the production performance of livestock and poultry, but the misuse of antibiotics in animal production plays a major role in the antibiotic resistance crisis and foodborne disease outbreaks. The addition of AGPs to improve production performance in livestock and poultry has been prohibited in some countries, including Europe, the United States and China. Moreover, cross-resistance could result in the development of multidrug resistant bacteria and limit therapeutic options for human and animal health. Therefore, finding alternatives to antibiotics to maintain the efficiency of livestock production and reduce the risk of foodborne disease outbreaks is beneficial to human health and the sustainable development of animal husbandry. Essential oils (EOs) and their individual compounds derived from aromatic plants are becoming increasingly popular as potential antibiotic alternatives for animal production based on their antibacterial properties. This paper reviews recent studies in the application of EOs in animal production for the control of foodborne pathogens, summarizes their molecular modes of action to increase the susceptibility of antibiotic-resistant bacteria, and provides a promising role for the application of nanoencapsulated EOs in animal production to control bacteria and overcome antibiotic resistance.
Collapse
Affiliation(s)
- Lianhua Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Gao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Ge
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
16
|
Kang J, Yin Z, Pei F, Ye Z, Song G, Ling H, Gao D, Jiang X, Zhang C, Ge J. Aerobic composting of chicken manure with penicillin G: Community classification and quorum sensing mediating its contribution to humification. BIORESOURCE TECHNOLOGY 2022; 352:127097. [PMID: 35367602 DOI: 10.1016/j.biortech.2022.127097] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Chicken manure containing antibiotics is a hazardous biological waste. The purpose of our study was to investigate how different concentrations of penicillin G alter the bacterial community to affect humification during aerobic composting of chicken manure. The effect of quorum sensing on the bacterial community was also evaluated. Penicillin G mainly affects low fold changes (within 4) for low-abundance (within 200) microbial genera. We found that the bacterial community cooperated to regulate humus and humic acid synthesis. The microbial genera that make up the bacterial community are different, but each bacterial community may have the same ecological function. Quorum sensing affects humic acid synthesis by regulating carbohydrate metabolism and amino acid metabolism in bacterial communities through mechanisms such as the pentose phosphate pathway and the shikimate pathway. This work presents an understanding of the impact of quorum sensing on the collaboration between bacterial communities during composting.
Collapse
Affiliation(s)
- Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Ziliang Yin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zeming Ye
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hongzhi Ling
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dongni Gao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xueyong Jiang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Chi Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|