1
|
Mills S, Ijaz UZ, Lens PNL. Environmental instability reduces shock resistance by enriching specialist taxa with distinct two component regulatory systems. NPJ Biofilms Microbiomes 2025; 11:54. [PMID: 40164638 PMCID: PMC11958701 DOI: 10.1038/s41522-025-00679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Different microbial communities are impacted disproportionately by environmental disturbances. The degree to which a community can remain unchanged under a disturbance is referred to as resistance1. However, the contributing ecological factors, which infer a community's resistance are unknown. In this study, the impact of historical environmental stability on ecological phenomena and microbial community resistance to shocks was investigated. Three separate methanogenic bioreactor consortia, which were subjected to varying degrees of historical environmental stability, and displayed different levels of resistance to an organic loading rate (OLR) shock were sampled. Their community composition was assessed using high throughput sequencing of 16S rRNA genes and assembly based metagenomics. The effect environmental instability on ecological phenomena such as microbial community assembly, microbial niche breadth and the rare biosphere were assessed in the context of each reactor's demonstrated resistance to an OLR shock. Additionally, metagenome assembled genomes were analysed for functional effects of prolonged stability/instability. The system which was subjected to more environmental instability experienced more temporal variation in community beta diversity and a proliferation of specialists, with more abundant two component regulatory systems. This community was more susceptible to deterministic community assembly and demonstrated a lower degree of resistance, indicating that microbial communities experiencing longer term environmental instability (e.g. variations in pH or temperature) are less able to resist a large disturbance.
Collapse
Affiliation(s)
| | - Umer Zeeshan Ijaz
- University of Galway, Galway, Ireland
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow, UK
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
2
|
Chang CJ, Chang CW, Lu HP, Hsieh CH, Wu JH. Bioenergetically constrained dynamical microbial interactions govern the performance and stability of methane-producing bioreactors. NPJ Biofilms Microbiomes 2025; 11:31. [PMID: 39971951 PMCID: PMC11840090 DOI: 10.1038/s41522-025-00668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Biogas generation from organic waste by anaerobic bioreactors as renewable energy largely depends on microbial community and species interplays involved. This microbial networking is complex and time-dependent, influencing community succession and reactor performance, but remains unexplored due to the challenges in quantifying dynamics. We employed empirical dynamic modeling to analyze daily networking from a newly established bioreactor converting sucrose to biogas. Over time, microbial interactions within the three trophic (fermentative, syntrophic, and methanogenic) groups varied substantially more than between groups. Notably, versatile syntrophic bacteria like Syntrophorhabdus exhibited stronger interaction strength (0.14 ± 0.22) to hydrogen-dependent methylotrophic Methanomassiliicoccus than strictly syntrophic bacteria associated with butyrate (0.01 ± 0.01 for Syntrophomonas) and propionate (0.00 ± 0.01 for Syntrophobacter). The time-varying interaction networks were closely linked to the system performance dynamics, particularly concerning hydrogen concentrations. As community succession progressed, the stability of interaction network increased through time, accompanied by increased complexity and higher interaction strength. Causal analyses revealed intricate feedback involving catabolic energetics, community structure, and microbial interactions. These feedback mechanisms played a crucial role in regulating anaerobic degradation processes, thereby offering strategies for manipulating microbial interactions to enhance bioreactor stability and efficiency.
Collapse
Affiliation(s)
- Chao-Jui Chang
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Wei Chang
- Institute of Fishery Sciences and Department of Life Science, National Taiwan University, Taipei, Taiwan.
| | - Hsiao-Pei Lu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Chih-Hao Hsieh
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan.
- Institute of Ecology and Evolutionary Biology, Department of Life Science, National Taiwan University, Taipei, Taiwan.
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
- National Center for Theoretical Sciences, Taipei, Taiwan.
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Campuzano Zagal SD, Wang X, Derlet N, Guenne A, Bureau C, Thibault S, Chapleur O. A comprehensive dataset for assessing the impact of ammonium salts and zeolite on anaerobic digestion performance, microbial dynamics, and metabolomic profiles. Data Brief 2024; 54:110357. [PMID: 38623544 PMCID: PMC11017268 DOI: 10.1016/j.dib.2024.110357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024] Open
Abstract
This article presents comprehensive data derived from lab-scale batch anaerobic digesters that were subjected to inhibition by various sources of ammonia. To counter this inhibition, zeolite was introduced into selected digesters. The provided dataset offers a detailed depiction of degradation performance dynamics over time, as well as insights into both microbial and metabolic changes during the inhibition. In detail, 10 conditions were tested in triplicate. In a first series of 15 bioreactors ammonia was introduced to achieve a TAN concentration of 8 g/L, utilizing NH3 solution, NH4Cl salt, (NH4)2CO3 salt, or (NH4)2PO4 salt as inhibitors. A control condition without ammonia was also set up. A second series of 15 bioreactors was set up exactly as the first one, with the addition of zeolite at a concentration of 15 g/L. The data provided includes information on operational conditions, degradation performance measurements throughout the entire process (using biogas production and composition, dissolved organic and inorganic carbon, volatile fatty acids, pH, free and total ammonia nitrogen, apparent isotopic fractionation of biogas as indicators), microbial community analysis using 16S rRNA gene sequencing (50 samples analysed), and metabolomic analysis through liquid chromatography-mass spectrometry (LC-MS) (108 samples analysed). Sequencing data were generated by using IonTorrent PGM sequencer. The sequencing data have been deposited with links to project PRJEB52324, in ENA database from EBI (https://www.ebi.ac.uk/ena/browser/view/PRJEB52324). Sample accession numbers go from SAMEA14277573 to SAMEA14277621. The metabolomic data were generated using an LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific, MA, US). The metabolomic data have been deposited to the EMBL-EBI MetaboLights database with the identifier MTBLS7859 (https://www.ebi.ac.uk/metabolights/MTBLS7859). This data can be used as a source for comparisons with other studies focusing on the inhibition of anaerobic digestion by ammonia, particularly in the context of exploring microbial or metabolomic dynamics during inhibition. Additionally it provides a multi-omic dataset (metataxonomic and metabolomic) with detailed associated metadata describing anaerobic digesters. The dataset is directly is associated to the research article titled "Inhibition of anaerobic digestion by various ammonia sources resulted in subtle differences in metabolite dynamics." [1].
Collapse
Affiliation(s)
| | - Xiaoqing Wang
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Nadine Derlet
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Angéline Guenne
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Chrystelle Bureau
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Sophie Thibault
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Olivier Chapleur
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| |
Collapse
|
4
|
Niya B, Yaakoubi K, Beraich FZ, Arouch M, Meftah Kadmiri I. Current status and future developments of assessing microbiome composition and dynamics in anaerobic digestion systems using metagenomic approaches. Heliyon 2024; 10:e28221. [PMID: 38560681 PMCID: PMC10979216 DOI: 10.1016/j.heliyon.2024.e28221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The metagenomic approach stands as a powerful technique for examining the composition of microbial communities and their involvement in various anaerobic digestion (AD) systems. Understanding the structure, function, and dynamics of microbial communities becomes pivotal for optimizing the biogas process, enhancing its stability and improving overall performance. Currently, taxonomic profiling of biogas-producing communities relies mainly on high-throughput 16S rRNA sequencing, offering insights into the bacterial and archaeal structures of AD assemblages and their correlations with fed substrates and process parameters. To delve even deeper, shotgun and genome-centric metagenomic approaches are employed to recover individual genomes from the metagenome. This provides a nuanced understanding of collective functionalities, interspecies interactions, and microbial associations with abiotic factors. The application of OMICs in AD systems holds the potential to revolutionize the field, leading to more efficient and sustainable waste management practices particularly through the implementation of precision anaerobic digestion systems. As ongoing research in this area progresses, anticipations are high for further exciting developments in the future. This review serves to explore the current landscape of metagenomic analyses, with focus on advancing our comprehension and critically evaluating biases and recommendations in the analysis of microbial communities in anaerobic digesters. Its objective is to explore how contemporary metagenomic approaches can be effectively applied to enhance our understanding and contribute to the refinement of the AD process. This marks a substantial stride towards achieving a more comprehensive understanding of anaerobic digestion systems.
Collapse
Affiliation(s)
- Btissam Niya
- Plant and Microbial Biotechnology Center, Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
- Engineering, Industrial Management & Innovation Laboratory IMII, Faculty of Science and Technics (FST), Hassan 1st University of Settat, Morocco
| | - Kaoutar Yaakoubi
- Plant and Microbial Biotechnology Center, Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Fatima Zahra Beraich
- Biodome.sarl, Research and Development Design Office of Biogas Technology, Casablanca, Morocco
| | - Moha Arouch
- Engineering, Industrial Management & Innovation Laboratory IMII, Faculty of Science and Technics (FST), Hassan 1st University of Settat, Morocco
| | - Issam Meftah Kadmiri
- Plant and Microbial Biotechnology Center, Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| |
Collapse
|
5
|
Chapleur O, Guenne A, Rutledge DN, Puig-Castellví F. Monitoring of cellulose-rich biowaste co-digestion with 3D fluorescence spectroscopy and mass spectrometry-based metabolomics. CHEMOSPHERE 2024; 349:140824. [PMID: 38040263 DOI: 10.1016/j.chemosphere.2023.140824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Anaerobic digestion (AD) is a promising waste management strategy that reduces landfilling while generating biogas. Anaerobic co-digestion involves mixing two or more substrates to enhance the nutrient balance required for microorganism growth and thus improve the degradation. Monitoring AD is crucial for comprehending the biological process, optimizing process stability, and achieving efficient biogas production. In this work, we have used three dimensional excitation emission fluorescence spectroscopy and mass spectrometry metabolomics, two complementary techniques, to monitor the anaerobic co-digestion (AcoD) of cellulose, ash wood or oak wood with food waste. The two approaches were compared together and to the biogas production records. Results of this experiment demonstrated the complementarity of both analytical techniques with the measurement of the biogas production since 3D fluorescence spectroscopy and MS metabolomics revealed the earlier molecular changes occurring in the bioreactors, mainly associated with the hydrolysis step, whereas the biogas production data reflected the biological activity in the last step of the digestion. Moreover, in all cases, the three data sets effectively delineated the differences among the substrates. While the two wood substrates were poorly degradable as they were richer in aromatic compounds, cellulose was highly degradable and was characterized by the production of several glycolipids. Then, the three tested AcoDs resulted in a similar 3D EEM fluorescence and metabolomics profiles, close to the one observed for the AD of food waste alone, indicating that the incorporation of the food waste drove the molecular degradation events in the AcoDs. Substrate-specific differences were appreciated from the biogas production data. The overall results of this research are expected to provide insight into the design of guidelines for monitoring AcoD.
Collapse
Affiliation(s)
- Olivier Chapleur
- Université Paris-Saclay, INRAE, PRocédés BiOtechnologiques Au Service de L'Environnement, 92761, Antony, France
| | - Angéline Guenne
- Université Paris-Saclay, INRAE, PRocédés BiOtechnologiques Au Service de L'Environnement, 92761, Antony, France
| | - Douglas N Rutledge
- Faculté de Pharmacie, Université Paris-Saclay, 91400, Orsay, France; Muséum National D'Histoire Naturelle, 75005, Paris, France
| | - Francesc Puig-Castellví
- Université Paris-Saclay, INRAE, PRocédés BiOtechnologiques Au Service de L'Environnement, 92761, Antony, France; Université Paris-Saclay, INRAE AgroParisTech, UMR SayFood, 75005, Paris, France.
| |
Collapse
|
6
|
Zhong MH, Yang L, Xiong K, Yang HL, Wang XL. Exploring the mechanism of Self-Consistent balance between microbiota and high efficiency in wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 374:128785. [PMID: 36822553 DOI: 10.1016/j.biortech.2023.128785] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Sewage treatment mediated by microbial organisms is a promising green trend. However, the complex balance between microbiota stability and highly efficient wastewater treatment requires investigation. This study successfully improved the effectiveness of sewage treatment by resetting the microbial community structure in the activated sludge. Truepera, Methylophaga, unclassified_Fodinicurvataceae, and unclassified_Actinomanarales were the dominant genera, while salinity and NH3-N content were identified as the key environmental factors governing the microbial structure. By optimizing the microflora structure driven by environmental factors, the key minor genera were activated and coordinated with the aforementioned genera, thereby promoting wastewater treatment. Finally, the chemical oxygen demand, NH3-N, and total phosphorus removal rates were improved to 86.8 ± 1.9%, 82.4 ± 4.1%, and 94.8 ± 3.8%, respectively. It provides a new insight to improve the wastewater treatment through setting microbiota by environmental factor driven.
Collapse
Affiliation(s)
- Ming-Hui Zhong
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Lin Yang
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Kai Xiong
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Hui-Lin Yang
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiao-Lan Wang
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|