1
|
Batista RS, Chaves GL, Oliveira DB, Pantaleão VL, Neves JDDS, da Silva AJ. Glycerol as substrate and NADP +-dependent glyceraldehyde-3-phosphate dehydrogenase enable higher production of 3-hydroxypropionic acid through the β-alanine pathway in E. coli. BIORESOURCE TECHNOLOGY 2024; 393:130142. [PMID: 38049020 DOI: 10.1016/j.biortech.2023.130142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Microbial engineering is a promising way to produce3-HP using biorenewable substrates such as glycerol. However, theglycerol pathway to obtain 3-HPrequires vitamin B-12, which hinders its economic viability. The present work showed that 3-HP can be efficiently produced from glycerol through the β-alanine pathway. To develop a cell factory for this purpose, glycerol was evaluated as a substrate and showed more than two-fold improved 3-HP production compared to glucose. Next, the reducing power was modulated by overexpression of an NADP+ -dependent glyceraldehyde-3-phosphate dehydrogenase coupled with CRISPR-based repression of the endogenous gapA gene, resulting in a 91 % increase in 3-HP titer. Finally, the toxicity of 3-HP accumulation was addressed by overexpressing a putative exporter (YohJK). Fed-batch cultivation of the final strain yielded 72.2 g/L of 3-HP and a productivity of 1.64 g/L/h, which are the best results for the β-alanine pathway and are similar to those found for other pathways.
Collapse
Affiliation(s)
- Raquel Salgado Batista
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Gabriel Luz Chaves
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Davi Benedito Oliveira
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Vitor Leonel Pantaleão
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - José Davi Dos Santos Neves
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Adilson José da Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil.
| |
Collapse
|
2
|
Liu D, Hwang HJ, Otoupal PB, Geiselman GM, Kim J, Pomraning KR, Kim YM, Munoz N, Nicora CD, Gao Y, Burnum-Johnson KE, Jacobson O, Coradetti S, Kim J, Deng S, Dai Z, Prahl JP, Tanjore D, Lee TS, Magnuson JK, Gladden JM. Engineering Rhodosporidium toruloides for production of 3-hydroxypropionic acid from lignocellulosic hydrolysate. Metab Eng 2023; 78:72-83. [PMID: 37201565 DOI: 10.1016/j.ymben.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.
Collapse
Affiliation(s)
- Di Liu
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA.
| | - Hee Jin Hwang
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Peter B Otoupal
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Gina M Geiselman
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Joonhoon Kim
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kyle R Pomraning
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Young-Mo Kim
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathalie Munoz
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carrie D Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kristin E Burnum-Johnson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Oslo Jacobson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Samuel Coradetti
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Jinho Kim
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shuang Deng
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ziyu Dai
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jan-Philip Prahl
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Deepti Tanjore
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Taek Soon Lee
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jon K Magnuson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John M Gladden
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA.
| |
Collapse
|
5
|
Zabed HM, Akter S, Rupani PF, Akor J, Zhang Y, Zhao M, Zhang C, Ragauskas AJ, Qi X. Biocatalytic gateway to convert glycerol into 3-hydroxypropionic acid in waste-based biorefineries: Fundamentals, limitations, and potential research strategies. Biotechnol Adv 2023; 62:108075. [PMID: 36502965 DOI: 10.1016/j.biotechadv.2022.108075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Microbial conversion of bioenergy-derived waste glycerol into value-added chemicals has emerged as an important bioprocessing technology due to its eco-friendliness, feasible technoeconomics, and potential to provide sustainability in biodiesel and bioethanol production. Glycerol is an abundant liquid waste from bioenergy plants with a projected volume of 6 million tons by 2025, accounting for about 10% of biodiesel and 2.5% of bioethanol yields. 3-Hydroxypropionic acid (3-HP) is a major product of glycerol bioconversion, which is the third largest biobased platform compound with expected market size and value of 3.6 million tons/year and USD 10 billion/year, respectively. Despite these biorefinery values, 3-HP biosynthesis from glycerol is still at an immature stage of commercial exploitation. The main challenges behind this immaturity are the toxic effects of 3-HPA on cells, the distribution of carbon flux to undesirable pathways, low tolerance of cells to glycerol and 3-HP, co-factor dependence of enzymes, low enzyme activity and stability, and the problems of substrate inhibition and specificity of enzymes. To address these challenges, it is necessary to understand the fundamentals of glycerol bioconversion and 3-HP production in terms of metabolic pathways, related enzymes, cell factories, midstream process configurations, and downstream 3-HP recovery, as discussed in this review critically and comprehensively. It is equally important to know the current challenges and limitations in 3-HP production, which are discussed in detail along with recent research efforts and remaining gaps. Finally, possible research strategies are outlined considering the recent technological advances in microbial biosynthesis, aiming to attract further research efforts to achieve a sustainable and industrially exploitable 3-HP production technology. By discussing the use of advanced tools and strategies to overcome the existing challenges in 3-HP biosynthesis, this review will attract researchers from many other similar biosynthesis technologies and provide a common gateway for their further development.
Collapse
Affiliation(s)
- Hossain M Zabed
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Suely Akter
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Parveen Fatemah Rupani
- Department of Chemical Engineering, Ku Luven, Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Joseph Akor
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yufei Zhang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Mei Zhao
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Cunsheng Zhang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; UTK-ORNL Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China; School of Life Sciences, Guangzhou University, Guangzhou 510,006, Guangdong Province, China.
| |
Collapse
|
6
|
Yu W, Cao X, Gao J, Zhou YJ. Overproduction of 3-hydroxypropionate in a super yeast chassis. BIORESOURCE TECHNOLOGY 2022; 361:127690. [PMID: 35901866 DOI: 10.1016/j.biortech.2022.127690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
3-Hydroxypropionate (3-HP) is a platform chemical for production of acrylic acid, acrylamide and biodegradable polymers. Several microbial cell factories have been constructed for production of 3-HP from malonyl-CoA by using a malonyl-CoA reductase, which however suffer from inadequate supply of precursor and cofactor. Here 3-HP biosynthesis was optimized in a super yeast chassis with sufficient supply of precursor malonyl-CoA and cofactor NADPH, which had a 3-fold higher 3-HP (1.4 g/L) than that of wild-type background. The instability of the engineered strain was observed in fed-batch fermentation due to the plasmid loss, which may be caused by the toxic intermediate malonate semialdehyde. Genome integration of MCR-C encoding C-terminal of MCR enabled stable gene expression and much higher 3-HP production of 4.4 g/L under batch fermentation and 56.5 g/L under fed-batch fermentation with a yield of 0.31 g/g glucose. This was the highest 3-HP production reported from glucose in engineered microbes.
Collapse
Affiliation(s)
- Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
7
|
Jayachandran V, Basak N, De Philippis R, Adessi A. Novel strategies towards efficient molecular biohydrogen production by dark fermentative mechanism: present progress and future perspective. Bioprocess Biosyst Eng 2022; 45:1595-1624. [PMID: 35713786 DOI: 10.1007/s00449-022-02738-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/27/2022] [Indexed: 01/05/2023]
Abstract
In the scenario of alarming increase in greenhouse and toxic gas emissions from the burning of conventional fuels, it is high time that the population drifts towards alternative fuel usage to obviate pollution. Hydrogen is an environment-friendly biofuel with high energy content. Several production methods exist to produce hydrogen, but the least energy intensive processes are the fermentative biohydrogen techniques. Dark fermentative biohydrogen production (DFBHP) is a value-added, less energy-consuming process to generate biohydrogen. In this process, biohydrogen can be produced from sugars as well as complex substrates that are generally considered as organic waste. Yet, the process is constrained by many factors such as low hydrogen yield, incomplete conversion of substrates, accumulation of volatile fatty acids which lead to the drop of the system pH resulting in hindered growth and hydrogen production by the bacteria. To circumvent these drawbacks, researchers have come up with several strategies that improve the yield of DFBHP process. These strategies can be classified as preliminary methodologies concerned with the process optimization and the latter that deals with pretreatment of substrate and seed sludge, bioaugmentation, co-culture of bacteria, supplementation of additives, bioreactor design considerations, metabolic engineering, nanotechnology, immobilization of bacteria, etc. This review sums up some of the improvement techniques that profoundly enhance the biohydrogen productivity in a DFBHP process.
Collapse
Affiliation(s)
- Varsha Jayachandran
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, 144 027, Punjab, India
| | - Nitai Basak
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, 144 027, Punjab, India.
| | - Roberto De Philippis
- Department of Agriculture, Food, Environment and Forestry, Florence University, Florence, Italy
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry, Florence University, Florence, Italy
| |
Collapse
|