1
|
Yang X, Liu Z, Chen C, Zhang T, Wang Q, Zhang R, Duan F, Tian X, Yao M, Demeestere K, Van Hulle SWH. Hybrid packed bed bioreactor using combined biodegradation and ozonation to enhance nitrogen and micropollutants removal from landfill leachate. BIORESOURCE TECHNOLOGY 2024; 412:131413. [PMID: 39226943 DOI: 10.1016/j.biortech.2024.131413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Landfill leachate contains ammonium and micropollutants. Ammonium can be biologically removed but bio-recalcitrant micropollutants removal requires post-treatment like ozonation. This study developed an expanded clay aggregates packed biofilm column (EBC) and demonstrated its feasibility of coupling biodegradation and ozonation (CBAO) to simultaneously remove nitrogen and bio-recalcitrant micropollutants. The first 60 days only had biodegradation process to start the bioreactor. 51 % nitrogen was biologically removed but the removal of micropollutant carbamazepine (CBZ) was only 30 %. From 61 d to 150 d, both biodegradation and ozonation were performed in the EBC. After 48 h-biodegradation, ozone gas was introduced and bubbling through EBC for 30 min to further remove residual micropollutants. At 0.4 gO3/gCOD, CBZ were completely removed. The average nitrogen removal efficiency (85 %) was increased by 34 % because the increased abundance of nitrifying and denitrifying bacteria in EBC. This study confirmed the promising potential of the CBAO process for treating landfill leachte.
Collapse
Affiliation(s)
- Xuetong Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing 100083, China; LIWET, Laboratory for Industrial Water and EcoTechnology, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens- Latemlaan 2B, B-8500 Kortrijk, Belgium
| | - Ze Liu
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai 810008, China
| | - Changtao Chen
- LIWET, Laboratory for Industrial Water and EcoTechnology, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens- Latemlaan 2B, B-8500 Kortrijk, Belgium.
| | - Tao Zhang
- LIWET, Laboratory for Industrial Water and EcoTechnology, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens- Latemlaan 2B, B-8500 Kortrijk, Belgium
| | - Qintong Wang
- LIWET, Laboratory for Industrial Water and EcoTechnology, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens- Latemlaan 2B, B-8500 Kortrijk, Belgium
| | - Rui Zhang
- LIWET, Laboratory for Industrial Water and EcoTechnology, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens- Latemlaan 2B, B-8500 Kortrijk, Belgium
| | - Feng Duan
- University of Chinese Academy of Sciences, Beijing 100083, China; Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang Tian
- School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Mingshui Yao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100083, China
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Stijn W H Van Hulle
- LIWET, Laboratory for Industrial Water and EcoTechnology, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens- Latemlaan 2B, B-8500 Kortrijk, Belgium
| |
Collapse
|
2
|
Su Q, Li X, Fan X, Cao S. Reactivation performance and sludge transformation after long-term storage of Partial denitrification/Anammox (PD/A) process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169505. [PMID: 38128655 DOI: 10.1016/j.scitotenv.2023.169505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
This study explores the startup of innovative Partial denitrification/Anammox (PD/A) process using long-term stored sludge (>2 years at 4 °C). Results indicate a swift recovery performance, characterized by a progressive increase in the activity of functional microorganisms with improved nitrogen volumetric loading rate during operation. Stable nitrogen removal efficiency of 99.6 % was attained at 14.2 °C under influent nitrate and ammonium of 120 and 100 mg/L, respectively. A distinctive transformation was observed as the initially black seeding sludge transitioned to brownish-red, accompanied by rapid sludge granulation with size notably increased from 263.1 μm (day 4) to 1255.0 μm (day 128), significantly contributing to the rapid PD/A performance recovery. Microbial community analysis revealed substantial increases in functional bacteria, Thauera (0.09 %-10.4 %) and Candidatus Brocadia (0.003 %-1.98 %), coinciding with enhanced nitrogen removal performance. Overall, this study underscores the viability of long-term stored PD/A sludge as a seed for rapid reactor startup, offering useful technical support to advance practical PD/A process implementation.
Collapse
Affiliation(s)
- Qingliang Su
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China
| | - Xing Li
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China
| | - Xiaoyan Fan
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China
| | - Shenbin Cao
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China; Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, China.
| |
Collapse
|
3
|
Zhu W, Van Tendeloo M, De Paepe J, Vlaeminck SE. Comparison of typical nitrite oxidizing bacteria suppression strategies and the effect on nitrous oxide emissions in a biofilm reactor. BIORESOURCE TECHNOLOGY 2023; 387:129607. [PMID: 37544532 DOI: 10.1016/j.biortech.2023.129607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In mainstream partial nitritation/anammox (PN/A), suppression of nitrite oxidizing bacteria (NOB) and mitigation of N2O emissions are two essential operational goals. The N2O emissions linked to three typical NOB suppression strategies were tested in a covered rotating biological contactor (RBC) biofilm system at 21 °C: (i) low dissolved oxygen (DO) concentrations, and treatments with (ii) free ammonia (FA), and (iii) free nitrous acids (FNA). Low emerged DO levels effectively minimized NOB activity and decreased N2O emissions, but NOB adaptation appeared after 200 days of operation. Further NOB suppression was successfully achieved by periodic (3 h per week) treatments with FA (29.3 ± 2.6 mg NH3-N L-1) or FNA (3.1 ± 0.3 mg HNO2-N L-1). FA treatment, however, promoted N2O emissions, while FNA did not affect these. Hence, biofilm PN/A should be operated at relatively low DO levels with periodic FNA treatment to maximize nitrogen removal efficiency while avoiding high greenhouse gas emissions.
Collapse
Affiliation(s)
- Weiqiang Zhu
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Michiel Van Tendeloo
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Jolien De Paepe
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
4
|
Zhu W, Van Tendeloo M, Alloul A, Vlaeminck SE. Feasibility of a return-sludge nursery concept for mainstream anammox biostimulation: creating optimal conditions for anammox to recover and grow in a parallel tank. BIORESOURCE TECHNOLOGY 2023:129359. [PMID: 37343792 DOI: 10.1016/j.biortech.2023.129359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
To overcome limiting anammox activity, a return-sludge nursery concept is proposed. This concept blends reject water treated with partial nitritation with mainstream effluent to increase the temperature, N levels, and EC of the anammox nursery reactor, which sludge periodically passes through the return sludge line of the mainstream system. Various nursery frequencies were tested in two 2.5 L reactors, including 0.5-2 days of nursery treatment per 3.5-14 days of the total operation. Bioreactor experiments showed that nursery increased nitrogen removal rates during mainstream operation by 33-38%. The increased anammox activity can be partly (35-60%) explained by higher temperatures. Elevated EC, higher nitrogen concentrations, and a putative synergy and/or unknown factor were responsible for 15-16%, 12-14%, and 10-36%, respectively. A relatively stable microbial community dominated by "Candidatus Brocadia" was observed. This new concept boosted activity and sludge growth, which may facilitate mainstream anammox implementations based on partial nitritation/anammox or partial nitrification/denitratation/anammox.
Collapse
Affiliation(s)
- Weiqiang Zhu
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Michiel Van Tendeloo
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
5
|
Zhang L, Jiang L, Zhang J, Li J, Peng Y. Enhancing nitrogen removal through directly integrating anammox into mainstream wastewater treatment: Advantageous, issues and future study. BIORESOURCE TECHNOLOGY 2022; 362:127827. [PMID: 36029988 DOI: 10.1016/j.biortech.2022.127827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has great potential to be applied to the process of nitrogen removal from mainstream wastewater. However, directly applying complete anammox to the mainstream is typically hindered by low temperatures, a low ammonia concentration, and high organic matter concentrations. Directly integrating anammox into mainstream treatment by enhancing the in-situ enrichment of anammox bacteria in wastewater treatment plants (WWTPs) could effectively improve the nitrogen removal efficiency and reduce the treatment cost. A certain anammox bacteria abundance in full-scale WWTPs provides the feasibility of directly integrating anammox into mainstream treatment and realizing partial mainstream anammox. The technical development status of partial anammox and the mechanisms of achieving partial mainstream anammox by aeration and organic control are summarized. This review provides an enhanced understanding of this novel technical route of partial mainstream anammox treatment for improving the quality, performance, and prospects for this technology to be used in upgrading WWTPs.
Collapse
Affiliation(s)
- Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ling Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiangtao Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
6
|
Wang Q, Kong J, Liang J, Gamal El-Din M, Zhao P, Xie W, Chen C. Nitrogen removal intensification of aerobic granular sludge through bioaugmentation with "heterotrophic nitrification-aerobic denitrification" consortium during petroleum wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 361:127719. [PMID: 35926555 DOI: 10.1016/j.biortech.2022.127719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The bioaugmentation potential of aerobic granular sludge (AGS) was investigated using heterotrophic nitrification-aerobic denitrification (HN-AD) bacterial consortium to improve nitrogen removal during petroleum wastewater treatment. An efficient HN-AD consortium was constructed by mixing Pseudomonas mendocina K0, Brucella sp. K1, Pseudomonas putida T4 and Paracoccus sp. T9. AGS bioaugmented by immobilized HN-AD consortium enhanced nitrogen removal, which showed NH4+-N and TN removal efficiency of 92.4% and 79.8%, respectively. The immobilized consortium addition facilitated larger AGS formation, while granules > 2.0 mm accounted for 16.7% higher than that of control (6.7%). Further, the abundance of napA gene was 4-times higher in the bioaugmented AGS as compared to the control, which demonstrated the long-term stability of HN-AD consortium in the bioreactor. The bioaugmented AGS also showed a higher abundance of xenobiotics biodegradation and nitrogen metabolism. These results highlight that bioaugmentation of AGS technology could be effectively used for enhanced denitrification of petroleum wastewater.
Collapse
Affiliation(s)
- Qinghong Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiawen Kong
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiahao Liang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Peng Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Wenyu Xie
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chunmao Chen
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
7
|
Vishnyakova A, Popova N, Artemiev G, Botchkova E, Litti Y, Safonov A. Effect of Mineral Carriers on Biofilm Formation and Nitrogen Removal Activity by an Indigenous Anammox Community from Cold Groundwater Ecosystem Alone and Bioaugmented with Biomass from a “Warm” Anammox Reactor. BIOLOGY 2022; 11:biology11101421. [PMID: 36290325 PMCID: PMC9598201 DOI: 10.3390/biology11101421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary During more than 50 years of exploitation of the sludge repositories near Chepetsky Mechanical Plant (Glazov, Udmurtia, Russia) containing solid wastes of uranium and processed polymetallic concentrate, the soluble compounds entered the upper aquifer due to infiltration. Nowadays, this has resulted in a high level of pollution of the groundwater with reduced and oxidized nitrogen compounds. In this work, quartz, kaolin, and bentonite clays from various deposits were shown to induce biofilm formation and enhance nitrogen removal by an indigenous microbial community capable of anaerobic ammonium oxidation with nitrite (anammox) at low temperatures. The addition of a “warm” anammox community was also effective in further improving nitrogen removal and expanding the list of mineral carriers most suitable for creating a permeable reactive barrier. It has been suggested that the anammox activity is determined by the presence of essential trace elements in the carrier, the morphology of its surface, and most importantly, competition from rapidly growing microbial groups. Future work was discussed to adapt the “warm” anammox community to cold and provide the anammox community with nitrite through a partial denitrification route within the scope of sustainable anammox-based bioremediation of a nitrogen-polluted cold aquifer. In this unique habitat, novel species of anammox bacteria that are adapted to cold and heavy nitrogen pollution can be discovered. Abstract The complex pollution of aquifers by reduced and oxidized nitrogen compounds is currently considered one of the urgent environmental problems that require non-standard solutions. This work was a laboratory-scale trial to show the feasibility of using various mineral carriers to create a permeable in situ barrier in cold (10 °C) aquifers with extremely high nitrogen pollution and inhabited by the Candidatus Scalindua-dominated indigenous anammox community. It has been established that for the removal of ammonium and nitrite in situ due to the predominant contribution of the anammox process, quartz, kaolin clays of the Kantatsky and Kamalinsky deposits, bentonite clay of the Berezovsky deposit, and zeolite of the Kholinsky deposit can be used as components of the permeable barrier. Biofouling of natural loams from a contaminated aquifer can also occur under favorable conditions. It has been suggested that the anammox activity is determined by a number of factors, including the presence of the essential trace elements in the carrier and the surface morphology. However, one of the most important factors is competition with other microbial groups that can develop on the surface of the carrier at a faster rate. For this reason, carriers with a high specific surface area and containing the necessary microelements were overgrown with the most rapidly growing microorganisms. Bioaugmentation with a “warm” anammox community from a laboratory reactor dominated by Ca. Kuenenia improved nitrogen removal rates and biofilm formation on most of the mineral carriers, including bentonite clay of the Dinozavrovoye deposit, as well as loamy rock and zeolite-containing tripoli, in addition to carriers that perform best with the indigenous anammox community. The feasibility of coupled partial denitrification–anammox and the adaptation of a “warm” anammox community to low temperatures and hazardous components contained in polluted groundwater prior to bioaugmentation should be the scope of future research to enhance the anammox process in cold, nitrate-rich aquifers.
Collapse
Affiliation(s)
- Anastasia Vishnyakova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Grigoriy Artemiev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Ekaterina Botchkova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Yuriy Litti
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
- Correspondence: ; Tel.: +7-(926)-369-92-43
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
8
|
Pimenov NV, Nikolaev YA, Dorofeev AG, Grachev VA, Kallistova AY, Kanapatskii TA, Litti YV, Gruzdev EV, Begmatov SA, Ravin NV, Mardanov AV. Introduction of Exogenous Activated Sludge as a Way to Enhance the Efficiency of Nitrogen Removal in the Anammox Process. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722300178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Deng L, Peng Y, Wu C, Gao R, Li W, Kao C, Li J. Mutual boost of granulation and enrichment of anammox bacteria in an anaerobic/oxic/anoxic system as the temperature decreases when treating municipal wastewater. BIORESOURCE TECHNOLOGY 2022; 357:127336. [PMID: 35618188 DOI: 10.1016/j.biortech.2022.127336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Low temperature is an important factor affecting the municipal wastewater treatment systems. The aim of this study was tracking the variations in the abundance of anammox bacteria (AnAOB) and the sludge form as the temperature decreased. Mutual boost of granulation and enrichment of AnAOB was achieved even though the temperature dropped from 20.4 °C to 12.9 °C. The average particle size of the sludge increased from 128.5 μm to 245.6 μm. With low dissolved oxygen (DO) aeration (0.2-0.5 mg/L) and short oxic hydraulic retention time (HRT) (5 h), nitritation in the anaerobic/oxic/anoxic (AOA) system was stable enough to provide NO2- for AnAOB. Ca. Brocadia, a type of typical AnAOB, was enriched from 0.03% to 0.24% in the suspended sludge and reached 16.09% in the granular sludge. Overall, this study presents the prospects of anammox and granule technologies when treating municipal wastewater at a low temperature.
Collapse
Affiliation(s)
- Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Changyong Wu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|