1
|
He Z, Fan G, Xu Z, Wu S, Xie J, Qiang W, Xu KQ. A comprehensive review of antibiotics stress on anammox systems: Mechanisms, applications, and challenges. BIORESOURCE TECHNOLOGY 2025; 418:131950. [PMID: 39647715 DOI: 10.1016/j.biortech.2024.131950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Anaerobic ammonia oxidation (anammox), an energy-efficient technology for treating ammonium-rich wastewater, faces the challenge of antibiotic stress in sewage. This paper systematically evaluated the impact of antibiotics on anammox by considering both inhibitory effects and recovery duration. This review focused on cellular responses, including extracellular polymeric substances (EPS), quorum sensing (QS), and enzymes. Then, the physiological properties of cells and the interactions between nitrogen and carbon metabolism under antibiotic stress were discussed, particularly within the anammoxosome. The microbial community evolution and the development and transfer of antibiotic resistance genes (ARGs) were further analyzed to reveal the resistance mechanisms of anammox. To address the limitations imposed by antibiotics, the development of bio-augmentation and combined processes based on molecular biology techniques, such as bio-electrochemical systems (BES), has been suggested. This review offered new insights into the mechanisms of antibiotic inhibition during the anammox process and aimed to advance their engineering applications.
Collapse
Affiliation(s)
- Zhimin He
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002, Fujian, China.
| | - Zongqiong Xu
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Shiyun Wu
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Jiankun Xie
- Fujian Academy of Building Research Co., Ltd., 350116, Fujian, China
| | - Wei Qiang
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Kai-Qin Xu
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China; College of Environment and Safety Engineering, Fuzhou University, 350116, Fujian, China.
| |
Collapse
|
2
|
Jiang Z, He Y, Zeng M, Zhang Y, Xu X, Zhang M. Revealing critical functional enzymes in anammox nitrogen removal and rate-limiting step in catalytic pathways: Insight into metaproteomics and density functional theory. BIORESOURCE TECHNOLOGY 2024; 406:131090. [PMID: 38986880 DOI: 10.1016/j.biortech.2024.131090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
To reveal the key enzymes in the nitrogen removal pathway and to further elucidate the mechanism of the catalytic reaction, this study utilized metaproteomics combined with molecular dynamics and density functional theory calculation. K. stuttgartiensis provided the proteins up to 88.37 % in the anammox-based system. Hydrazine synthase (HZS) and hydrazine dehydrogenase (HDH) accounted for 15.94 % and 3.45 % of the total proteins expressed by K. stuttgartiensis, thus were considered as critical enzymes in the nitrogen removal pathway. The process of HZSγ binding to NO with lowest binding free energy of -4.91 ± 1.33 kJ/mol. The reaction catalyzed by HZSα was calculated to be the rate-limiting catalyzing step, because it transferred the proton from NH3 to ·OH by crossing an energy barrier of up to 190.29 kJ/mol. This study provided molecular level insights to enhance the performance of nitrogen removal in anammox-based system.
Collapse
Affiliation(s)
- Zhicheng Jiang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, China
| | - Yuhang He
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, China
| | - Ming Zeng
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, China.
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xinxin Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Li Y, Chen Z, Huang Y, Zheng C, Lu S, Wang X, Zhang C, Yi X, Huang M. Response mechanism of a highly efficient partial nitritation-anammox (PN/A) process under antibiotic stress: Extracellular polymers, microbial community, and functional genes. ENVIRONMENTAL RESEARCH 2024; 251:118575. [PMID: 38431068 DOI: 10.1016/j.envres.2024.118575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The Partial nitritation-Anammox (PN/A) process can be restricted when treating high ammonia nitrogen wastewater containing antibiotics. This study aims to explore the response mechanism of the PN/A process under antibiotic stress. Results showed the PN/A process achieved a nitrogen removal rate higher than 1.01 ± 0.03 kg N/m3/d under long-term sulfamethazine stress. The increase of extracellular polymers from 22.52 to 43.96 mg/g VSS was conducive to resisting antibiotic inhibitory. The increase of Denitratisoma and SM1A02 abundance as well as functional genes nirS and nirK indicated denitrifiers should play an important role in the stability of the PN/A system under sulfamethazine stress. In addition, antibiotic-resistant genes (ARGs) sul1 and intI1 significantly increased by 8.78 and 5.12 times of the initial values to maintain the resistance of PN/A process to sulfamethazine stress. This study uncovers the response mechanism of the PN/A process under antibiotic stress, offering a scientific basis and guidance for further application in the future.
Collapse
Affiliation(s)
- Yingqiang Li
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, People's Republic of China; Huashi(Fujian) Environment Technology Co. Ltd, Quanzhou, 362001, People's Republic of China
| | - Zhenguo Chen
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, People's Republic of China.
| | - Yuexiang Huang
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Chunying Zheng
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, People's Republic of China
| | - Simin Lu
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, People's Republic of China
| | - Xinzhi Wang
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, People's Republic of China
| | - Chao Zhang
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, People's Republic of China
| | - Xiaohui Yi
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, People's Republic of China; Huashi(Fujian) Environment Technology Co. Ltd, Quanzhou, 362001, People's Republic of China
| | - Mingzhi Huang
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, People's Republic of China; Huashi(Fujian) Environment Technology Co. Ltd, Quanzhou, 362001, People's Republic of China.
| |
Collapse
|
4
|
Yang JH, Fu JJ, Jia ZY, Geng YC, Ling YR, Fan NS, Jin RC. Microbial response and recovery strategy of the anammox process under ciprofloxacin stress from pure strain and consortia perspectives. ENVIRONMENT INTERNATIONAL 2024; 186:108599. [PMID: 38554504 DOI: 10.1016/j.envint.2024.108599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
Ciprofloxacin (CIP) poses a high risk of resistance development in water environments. Therefore, comprehensive effects and recovery strategies of CIP in anaerobic ammonia oxidation (anammox) process were systematically elucidated from consortia and pure strains perspectives. The anammox consortia was not significantly affected by the stress of 10 mg L-1 CIP, while the higher concentration (20 mg L-1) of CIP caused a dramatic reduction in the nitrogen removal performance of anammox system. Simultaneously, the abundances of dominant functional bacteria and corresponding genes also significantly decreased. Such inhibition could not be mitigated by the recovery strategy of adding hydrazine and hydroxylamine. Reducing nitrogen load rate from 5.1 to 1.4 kg N m-3 d-1 promoted the restoration of three reactors. In addition, the robustness and recovery of anammox systems was evaluated using starvation and shock strategies. Simultaneously, antibiotic resistance genes and key metabolic pathways of anammox consortia were upregulated, such as carbohydrate and energy metabolisms. In addition, 11 pure stains were isolated from the anammox system and identified through phylogenetic analysis, 40 % of which showed multidrug resistance, especially Pseudomonas. These findings provide deep insights into the responding mechanism of anammox consortia to CIP stress and promote the application of anammox process for treating wastewater containing antibiotics.
Collapse
Affiliation(s)
- Jun-Hui Yang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Jin Fu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi-Yu Jia
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yin-Ce Geng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Rong Ling
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
5
|
Wang Q, Sun X, Fan W, Chen X, Han W, Zhao S, Jia W. Insights into the response of anammox process to oxytetracycline: Impacts of static magnetic field. CHEMOSPHERE 2023; 340:139821. [PMID: 37586490 DOI: 10.1016/j.chemosphere.2023.139821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The long-term effects of oxytetracycline (OTC) with a high concentration on the anaerobic ammonium oxidation (Anammox) process were evaluated, and the role of static magnetic field (SMF) was further explored. The stress of OTC at 50 mg/L had little effect on the nitrogen removal of anammox process at the first 16 days. With the continuous addition of OTC and the increase of nitrogen loading, the OTC inhibited the nitrogen removal and anammox activity severely. During the 32 days of recovery period without OTC addition, the nitrogen removal was further deteriorated, indicating the inhibition of OTC on anammox activity was irreversible and persistent. The application of SMF alleviated the inhibition of OTC on anammox to some extent, and the specific anammox activity was enhanced by 47.1% compared to the system without SMF during the OTC stress stage. Antibiotic efflux was the major resistance mechanism in the anammox process, and tetA, tetG and rpsJ were the main functional antibiotic resistance genes. The addition of OTC weakened the metabolic interactions between the anammox bacteria and the symbiotic bacteria involved in the metabolism of cofactors and secondary metabolites, leading to the poor anammox activity. The adaptability of microbes to the OTC stress was improved by the application of SMF, which can enhance the metabolic pathways related to bacterial growth and resistance to environmental stress.
Collapse
Affiliation(s)
- Qian Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xiaoyi Sun
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Wenli Fan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xi Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Wenxuan Han
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Shuang Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Wenlin Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
6
|
Liu S, Yin M, Sun L, Jiao Y, Zheng Y, Yan L. Iron-loaded sludge biochar alleviates the inhibitory effect of tetracycline on anammox bacteria: Performance and mechanism. CHEMOSPHERE 2023; 333:138987. [PMID: 37209845 DOI: 10.1016/j.chemosphere.2023.138987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The anaerobic ammonia oxidation (anammox) process is sensitive to environmental pollutants, such as antibiotics. In this study, the harmful effect of tetracycline (TC) on the performance of an anammox reactor and the mitigation of TC inhibition by iron-loaded sludge biochar (Fe-BC) were studied by analyzing extracellular polymeric substances (EPS), microbial community structure and functional genes. The total inorganic nitrogen (TIN) removal rate of the TC reactor was reduced by 5.86% compared to that of the control group, while that of the TC + Fe-BC reactor improved by 10.19% compared to that of the TC reactor. Adding Fe-BC increased the activity of anammox sludge by promoting the secretion of EPS (including protein, humic acids and c-Cyts). The results of the enzymolysis experiment showed that protein can improve the activity of anammox sludge, while the ability of polysaccharide to improve the activity of anammox was related to the treated enzymes. In addition, Fe-BC alleviated the inhibitory effect of TC by mediating the anammox electron transfer process. Furthermore, Fe-BC increased the absolute abundance of hdh and hzsB by 2.77 and 1.18 times compared to the TC reactor and improved the relative abundance of Candidatus Brocadia in the absence of TC. The addition of Fe-BC is an effective way to alleviate the inhibitory effect of TC on the anammox process.
Collapse
Affiliation(s)
- Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Luoting Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Jiao
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
7
|
Yang J, Chen Z, Wang X, Zhang Y, Li J, Zhou S. Elucidating nitrogen removal performance and response mechanisms of anammox under heavy metal stress using big data analysis and machine learning. BIORESOURCE TECHNOLOGY 2023; 382:129143. [PMID: 37169206 DOI: 10.1016/j.biortech.2023.129143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
In this study, machine learning algorithms and big data analysis were used to decipher the nitrogen removal rate (NRR) and response mechanisms of anammox process under heavy metal stresses. Spearman algorithm and Statistical analysis revealed that Cr6+ had the strongest inhibitory effect on NRR compared to other heavy metals. The established machine learning model (extreme gradient boost) accurately predicted NRR with an accuracy greater than 99%, and the prediction error for new data points was mostly less than 20%. Additionally, the findings of feature analysis demonstrated that Cu2+ and Fe3+ had the strongest effect on the anammox process, respectively. According to the new insights from this study, Cr6+ and Cu2+ should be removed preferentially in anammox processes under heavy metal stress. This study revealed the feasible application of machine learning and big data analysis for NRR prediction of anammox process under heavy metal stress.
Collapse
Affiliation(s)
- Junfeng Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Zhenguo Chen
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China; Hua An Biotech Co., Ltd., Foshan 528300, China.
| | - Yu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Jiayi Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | | |
Collapse
|
8
|
Guo Z, Ahmad HA, Tian Y, Zhao Q, Zeng M, Wu N, Hao L, Liang J, Ni SQ. Extensive data analysis and kinetic modelling of dosage and temperature dependent role of graphene oxides on anammox. CHEMOSPHERE 2022; 308:136307. [PMID: 36067812 DOI: 10.1016/j.chemosphere.2022.136307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is carbon friendly biological nitrogen removal process, and recently more focus is given to improving the anammox activity. Because of its high adsorption and modifiability, graphene and its derivative in wastewater treatment have received much attention. However, the specific effects and mechanisms of graphene oxide (GO) and reduced graphene oxide (RGO) on anammox are still controversial. Extensive data analysis was performed to explore the effects of GO and RGO on anammox. Statistical analysis revealed that 100 mg/L GO significantly promoted the anammox process, while 200 mg/L of GO inhibited the anammox process. The promotion of anammox performance under the influence of RGO was dependent on the temperature. The Logistic model was utilized for depicting the variation of nitrogen removal efficiency under promoting dosage of graphene oxides. A neural network model-based analysis was performed to reach anammox's potential mechanisms under the influence of two graphene oxides. Spearman correlation analysis showed that GO and RGO had significant positive correlations with nitrogen removal efficiency and specific anammox activity (p < 0.01), especially for RGO. In addition, the abundance of Planctomycetes and Nitrospirae was positively correlated with the addition of graphene oxides. This work comprehensively unraveled the role of graphene oxide materials on the anammox process and provided practical directions for the enhancement of anammox.
Collapse
Affiliation(s)
- Zheng Guo
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457, Tianjin, China; Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yuhe Tian
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Qingyu Zhao
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Ming Zeng
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300384, China
| | - Linlin Hao
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Jiaqi Liang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300384, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
9
|
Xu X, Li H, Guo M, Zeng M, Liu W, Wu N, Liang J, Cao J. Deciphering performance and potential mechanism of anammox-based nitrogen removal process responding to nanoparticulate and ionic forms of different heavy metals through big data analysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|