1
|
Pan W, Wang Q, Ren T, Tang Z, Chen Y, Liu H, Peng Y, Yue H, Liu D. Achieving advanced nitrogen removal from oxytetracycline wastewater by partial nitrification-endogenous denitrification: performance, metabolic pathways, microorganism community, and potential applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125333. [PMID: 40252416 DOI: 10.1016/j.jenvman.2025.125333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Partial nitrification-endogenous denitrification (PNED) can achieve advanced nutrient removal from wastewater. Herein, an anaerobic/oxic/anoxic/oxic-sequencing batch reactor (AOAO-SBR) was used to treat real oxytetracycline (OTC) pharmaceutical wastewater via PNED. Partial nitrification with an average nitrite accumulation ratio of 91.5 % was achieved. When the influent total nitrogen was 105 ± 10 mg/L, the effluent of it was only 5.9 mg/L, and the removal efficiency was 94.8 %. In the typical cycle, multiple nitrogen removal pathways including endogenous denitrification, simultaneous nitrification-denitrification, and denitrification contributed to 68.0 %, 20.3 %, and 7.3 %. The effluent concentration of NH4+-N was 5 mg/L, and NO2--N and NO3--N were not detected. The biodegradation pathways of OTC were proposed, 47.1 % of OTC was degraded and eight possible degradation byproducts were detected with low toxicity in the extracellular and intracellular. Moreover, Extracellular polymeric substances increased from 35.3 (mg/gVSS) to 74.4 (mg/gVSS) during 120 days, which acts as a critical role in OTC degradation. High-throughput sequencing results showed that the relative abundance of ammonia-oxidizing bacteria was 2.4 %, and nitrite-oxidizing bacteria were washed out, which was conducive to partial nitrification. Candidatus_Competibacter (13.9 %) enhanced nitrogen removal by endogenous denitrification. Thauera (13.5 %), Ottowia (9.2 %), and OLB13 (1.2 %) are the main OTC-degrading bacteria. This study provides a valuable reference to treat OTC pharmaceutical wastewater effectively.
Collapse
Affiliation(s)
- Wentao Pan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China; Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou, 730070, China
| | - Qi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China; Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou, 730070, China
| | - Tiantian Ren
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China; Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou, 730070, China
| | - Zhiqiang Tang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China; Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou, 730070, China
| | - Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China; Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou, 730070, China.
| | - Hong Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China; Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou, 730070, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Hanpeng Yue
- Gansu Qilianshan Pharmaceutical Co., Ltd, China
| | | |
Collapse
|
2
|
Wu Y, Wang H, Zhang L, Zeng W, Peng Y. Multi-omics reveals mechanism of hydroxylamine-enhanced ultimate nitrogen removal in pilot-scale anaerobic/aerobic/anoxic system. WATER RESEARCH 2025; 274:123101. [PMID: 39787834 DOI: 10.1016/j.watres.2025.123101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Hydroxylamine (HA) dosing is an effective strategy for promoting partial nitrification (PN); however, its impact on endogenous denitrification remains underexplored. In this study, long-term continuous HA dosing (1.4 mg/L) was introduced for over 110 days in a pilot-scale anaerobic/aerobic/anoxic (AOA) system treating municipal wastewater (66.7-75 m3/d). The HA dosing significantly increased the nitrite accumulation ratio to 67.6 ± 5.0 % (p<0.001) and reduced the effluent total inorganic nitrogen concentration from 6.2 ± 2.0 to 2.4 ± 1.1 mg/L (p<0.001), achieving a nitrogen removal efficiency of 87.4 ± 4.5 % (p<0.001) at a hydraulic retention time of 8 h. During the HA dosing, aerobic nitrogen removal contribution increased from 2.4 ± 3.4 % to 25.8 ± 8.1 % (p<0.001), and the anoxic nitrogen removal rate improved from 1.63 ± 0.11 to 2.35 ± 0.13 mg N/(L·h) (p<0.001). Enhanced nitrogen removal was not only achieved through the rapid establishment of PN but also driven by the long-term impact of HA dosing on microbial community dynamics. Multi-omics analyses revealed that HA disrupted the polyphosphate (poly-P) cycle, evidenced by enhanced transcription of ppx (poly-P degradation) and suppressed ppk (poly-P synthesis), thereby reducing energy availability for phosphate-accumulating organisms (PAOs) and shifting the carbon source competition toward glycogen-accumulating organisms (GAOs), with Ca. Competibacter abundance increased from 0.16 % to 1.13 % (p < 0.001). The economic analysis demonstrated that HA reduced sludge production by 11.2 % and saved operating costs by 31.4-42.8 % compared to conventional carbon sources. These findings highlight the potential of HA dosing to achieve sustainable and highly efficient wastewater treatment.
Collapse
Affiliation(s)
- You Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hanbin Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
3
|
Xu RZ, Cao JS, Luo JY, Ni BJ, Fang F, Liu W, Wang P. Understanding nitrogen removal and N 2O emission mechanisms in an anaerobic-swing-anoxic-oxic (ASAO) continuous plug-flow system for low C/N municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177041. [PMID: 39437919 DOI: 10.1016/j.scitotenv.2024.177041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
This study aims to investigate effects of dissolved oxygen (DO) levels and aerated hydrodynamic retention time (HRT) on nitrogen removal and nitrous oxide (N2O) emissions in a novel anaerobic-swing-anoxic-oxic (ASAO) continuous plug-flow system for treating low carbon to nitrogen ratio municipal wastewater. The swing zones had varying DO levels and volumes, deciding the aerated HRT of the ASAO system. Results showed that low DO level (0.8-1.0 mg/L) and short aerated HRT led to high nitrogen removal performance (91.4 %-96.3 %) and low N2O emission factor (2.8 %). The simultaneous nitrification and denitrification (SND) in swing zones and endogenous denitrification in anoxic zones contributed to the nitrogen removal. Meanwhile, the SND and autotrophic denitrification processes were identified as the N2O sources. Low DO level enriched ammonia-oxidizing bacteria and enhanced the SND and autotrophic denitrification pathway. These findings suggest that the ASAO system is promising for reducing carbon emissions in municipal wastewater treatment.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230601, China
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bing-Jie Ni
- University of New South Wales, Sydney, NSW 2052, Australia
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Weijing Liu
- Jiangsu Provincial Key Laboratory of Environment Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
4
|
Shi X, Liu J, Wu Y, Wu K, Peng Y. Novel control strategy employing anaerobic/aerobic/anoxic/aerobic/anoxic mode to enhance endogenous denitrification and anammox for municipal wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 414:131565. [PMID: 39362345 DOI: 10.1016/j.biortech.2024.131565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Anaerobic/Aerobic/Anoxic (AnOA) process utilizes endogenous denitrification to remove nitrogen. However, low endogenous denitrification activity critically restricts its application owing to insufficient carbon sources. In this study, a novel control strategy employing anaerobic/aerobic/anoxic/aerobic/anoxic (AOAOA) mode was introduced to treat low Carbon/Nitrogen (C/N) ratio municipal wastewater over 262 days. The concentration of total inorganic nitrogen (TIN) was only 3.9 ± 2.0 mg/L in the effluent, with a high nitrogen removal efficiency (NRE) of 94.3 %. The relative abundance of Candidatus Competibacter increased from 1.2 % to 2.3 %, ensuring an efficient endogenous denitrification process. Additionally, Candidatus Brocadia enriched from 0.02 % to 0.6 %, contributing to 63.1 % nitrogen removal during the anoxic stage in Phase Ⅲ. This study presents a promising approach for enhancing endogenous denitrification and anammox in the AnOA process, contributing to sustainable wastewater treatment.
Collapse
Affiliation(s)
- Xialian Shi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - You Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ke Wu
- China Energy Conservation and Environmental Protection Group (CECEP) Guozhen Environm Protect Sci & Tech Co Ltd, Hefei 230088, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Zhou W, Zhang Q, Wang B, Peng Y, Hou F, Pang H, Peng Y. Predicting aeration time and nitrite accumulation rate variations for Partial Nitritation: A model incorporating nitrogen oxidation rate dynamics. WATER RESEARCH 2024; 268:122615. [PMID: 39418798 DOI: 10.1016/j.watres.2024.122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
This study aimed to develop a two-step nitrification model to predict variations in aeration time and nitrite accumulation rate (NAR) under fluctuating operational conditions in mainstream partial nitritation (PN) processes. Lab-scale sequencing batch reactors (SBRs) were used to evaluate the ammonia oxidation rate (AOR) and nitrite oxidation rate (NOR) under different solids retention times (SRT) (10, 15, 20, 30, and 50 days) and total volumetric nitrogen loadings (TVNL) (20-60 mg N/L per cycle). A static model was developed to predict consistent AOR and NOR values in the steady state, whereas a dynamic model was established to capture the growth dynamics of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) under unsteady-state conditions. The static model accurately predicted the AOR, NOR, and aeration time at steady state. The dynamic model quantified the relationship between specific growth rates (μ) and food-to-microorganism ratios (F/M) through exponential fitting, successfully capturing AOB and NOB growth dynamics. Validation experiments (SRT = 10 d, TVNL = 60 mg/L per cycle) demonstrated the ability of the dynamic model to predict trends in NAR and aeration time accurately. This study emphasizes the importance of accurately modeling AOR and NOR variations to predict aeration time and NAR, thereby providing valuable insights for aeration control and precise management of AOB and NOB populations in mainstream PN processes.
Collapse
Affiliation(s)
- Wentao Zhou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yi Peng
- Beijing Xintong Bishui Reclaimed Water Co., Ltd., Beijing 101149, China
| | - Feng Hou
- Xinkai Environment Investment Co., Ltd., Beijing, 101101, China
| | - Hongtao Pang
- Xinkai Environment Investment Co., Ltd., Beijing, 101101, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
6
|
Tang C, Yue Q, Liu H, Dang H, Lv W, Li X, Chen Y. Optimizing operation strategy to improve storage of intracellular carbon sources in anaerobic/oxic/anoxic system: Enhanced nitrogen removal by endogenous denitrification. CHEMOSPHERE 2024; 365:143306. [PMID: 39255857 DOI: 10.1016/j.chemosphere.2024.143306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Endogenous denitrification (ED) can make full use of the carbon sources and avoid replenishment of it. However, strengthening the storage of intracellular carbon sources is an important factor in improving ED efficiency. In this study, employed batch experiments using real domestic wastewater in the anaerobic/oxic (A/O) process. The anaerobic and oxic processes were run for 4 h under ambient conditions with the dissolved oxygen (DO) concentrations in the oxic stage controlled at 0.5, 1.0, 1.5, and 3.0 mg/L, respectively. The results showed that the content of poly-β-hydroxyalkanoates (PHA) reached its peak at 60 min (1.25 mmolC/L). And with DO concentrations of 1.5 mg/L, the contents of glycogen (Gly) were 27.74 mmolC/L. Subsequently, the AOA-SBR was established to investigate its effect on the long-term nitrogen removal performance of domestic wastewater by optimizing the anaerobic time and DO concentrations. The results showed that at an anaerobic time of 60 min and DO concentration of 1.5 mg/L, the storage of the intracellular carbon sources was highest and the total nitrogen (TN) removal efficiency increased to 82.12%. In addition, Candidatus Competibacter dominated gradually in the system as the strategy was optimized.
Collapse
Affiliation(s)
- Chenxin Tang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Qiong Yue
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hong Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hongzhong Dang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Wei Lv
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Xiaofan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Gu C, Li X, Zhang S, Li J, Gao X, Chen G, Wang Z, Peng Y. Advanced nitrogen and phosphorus removal in pilot-scale anaerobic/aerobic/anoxic system for municipal wastewater in Northern China. BIORESOURCE TECHNOLOGY 2024; 399:130616. [PMID: 38513924 DOI: 10.1016/j.biortech.2024.130616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Removing nitrogen and phosphorus from low ratio of chemical oxygen demand to total nitrogen and temperature municipal wastewater stays a challenge. In this study, a pilot-scale anaerobic/aerobic/anoxic sequencing batch reactor (A/O/A-SBR) system first treated 15 m3/d actual municipal wastewater at 8.1-26.4 °C for 224 days. At the temperature of 15.7 °C, total nitrogen in influent and effluent were 45.5 and 10.9 mg/L, and phosphorus in influent and effluent were 3.9 and 0.1 mg/L. 16 s RNA sequencing results showed the relative abundance of Competibacter and Tetrasphaera raised to 1.25 % and 1.52 %. The strategy of excessive, no and normal sludge discharge enriched and balanced the functional bacteria, achieving an endogenous denitrification ratio more than 43.3 %. Sludge reduction and short aerobic time were beneficial to energy saving contrast with a Beijing municipal wastewater treatment. This study has significant implications for the practical application of the AOA-SBR process.
Collapse
Affiliation(s)
- Changkun Gu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shujun Zhang
- Research and Development Center of Beijing Drainage Group Technology, Beijing 100124, PR China
| | - Jianwei Li
- Research and Development Center of Beijing Drainage Group Technology, Beijing 100124, PR China
| | - Xiaoyu Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Guo Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhibin Wang
- Research and Development Center of Beijing Drainage Group Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
8
|
Gao X, Zhang L, Liu J, Zhang Y, Peng Y. First application of the novel anaerobic/aerobic/anoxic (AOA) process for advanced nutrient removal in a wastewater treatment plant. WATER RESEARCH 2024; 252:121234. [PMID: 38310803 DOI: 10.1016/j.watres.2024.121234] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
The stringent effluent quality standards in wastewater treatment plants (WWTPs) can effectively mitigate environmental issues such as eutrophication by reducing the discharge of nutrients into water environments. However, the current wastewater treatment process often struggles to achieve advanced nutrient removal while also saving energy and reducing carbon consumption. The first full-scale anaerobic/aerobic/anoxic (AOA) system was established with a wastewater treatment scale of 40,000 m3/d. Over one year of operation, the average TN and TP concentration in the effluent of 7.53 ± 0.81 and 0.37 ± 0.05 mg/L was achieved in low TN/COD (C/N) ratio (average 5) wastewater treatment. The post-anoxic zones fully utilized the internal carbon source stored in pre-anaerobic zones, removing 41.29 % of TN and 36.25 % of TP. Intracellular glycogen (Gly) and proteins in extracellular polymeric substances (EPS) served as potential drivers for post-anoxic denitrification and phosphorus uptake. The sludge fermentation process was enhanced by the long anoxic hydraulic retention time (HRT) of the AOA system. The relative abundance of fermentative bacteria was 31.66 - 55.83 %, and their fermentation metabolites can provide additional substrates and energy for nutrient removal. The development and utilization of internal carbon sources in the AOA system benefited from reducing excess sludge production, energy conservation, and advanced nutrient removal under carbon-limited. The successful full-scale validation of the AOA process provided a potentially transformative technology with wide applicability to WWTPs.
Collapse
Affiliation(s)
- Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yong Zhang
- Beijing Belant Environmental Technology Co., Ltd., Beijing 100071, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
9
|
An Z, Gao X, Shao B, Zhang Q, Ding J, Peng Y. Synchronous Achievement of Advanced Nitrogen Removal and N 2O Reduction in the Anoxic Zone in the AOA Process for Low C/N Municipal Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2335-2345. [PMID: 38271692 DOI: 10.1021/acs.est.3c06746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous flow processes for the in situ determination of N2O emissions during low C/N municipal wastewater treatment have rarely been reported. The anaerobic/aerobic/anoxic (AOA) process has recently shown promising potential in energy savings and advanced nitrogen removal, but it still needs to be comprehensively explored in relation to N2O emissions for its carbon reduction advantages. In this study, a novel gas-collecting continuous flow reactor was designed to comprehensively evaluate the emissions of N2O from the gas and liquid phases of the AOA process. Additionally, the measures of enhancing endogenous denitrification (ED) and self-enriching anaerobic ammonium oxidation (Anammox) were employed to optimize nitrogen removal and achieve N2O reduction in the anoxic zone. The results showed that enhanced ED coupled with Anammox led to an increase in the nitrogen removal efficiency (NRE) from 67.65 to 81.96%, an enhancement of the NO3- removal rate from 1.76 mgN/(L h) to 3.99 mgN/(L h), and the N2O emission factor in the anoxic zone decreased from 0.28 to 0.06%. Impressively, ED eliminated 91.46 ± 2.47% of the dissolved N2O from the upstream aerobic zone, and the dissolved N2O in the effluent was reduced to less than 0.01 mg/L. This study provides valuable strategies for fully evaluating N2O emissions and N2O reduction from the AOA process.
Collapse
Affiliation(s)
- Zeming An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Baishuo Shao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Ding
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
10
|
Chen H, Ye Q, Wang X, Sheng J, Yu X, Zhao S, Zou X, Zhang W, Xue G. Applying sludge hydrolysate as a carbon source for biological denitrification after composition optimization via red soil filtration. WATER RESEARCH 2024; 249:120909. [PMID: 38006788 DOI: 10.1016/j.watres.2023.120909] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Sludge hydrolysate, the byproduct generated during sludge hydrothermal treatment (HT), is a potential carbon source for biological denitrification. However, the refractory organic matters and the nutrient substances are unfavorable to the nitrogen removal. In this study, effects of HT conditions on the hydrolysate properties, and the hydrolysate compositions optimization via red soil (RS) filtration were investigated. At HT temperature of 160-220 °C and reaction time of 1-4 h, the highest dissolution rate of organics from sludge to hydrolysate achieved 70.1 %, while the acetic acid dominated volatile fatty acids (VFAs) was no more than 5.0 % of the total organic matter content. The NH4+-N and dissolved organic nitrogen (DON) were the main nitrogen species in hydrolysate. When the hydrolysate was filtered by RS, the high molecular weight organic matters, DON, NH4+ and PO43- were effectively retained by RS, while VFAs and polysaccharide favorable for denitrification were kept in the filtrate. When providing same COD as the carbon source, the filtrate group (Fi-Group) introduced lower concentrations of TN and humic substances but higher content of VFAs. This resulted in TN removal rate (57.0 %) and denitrification efficiency (93.6 %) in Fi-Group higher than those in hydrolysate group (Hy-Group), 39.4 % and 83.7 %, respectively. It is noticeable that both Hy- and Fi- Groups up-regulated most of denitrification functional genes, and increased the richness and diversity of denitrifying bacteria. Also, more denitrifying bacteria genera appeared, and their relative abundance increased significantly from 3.31 % in Control to 21.15 % in Hy- Group and 31.31 % in Fi-Group. This indicates that the filtrate is a more suitable carbon source for denitrification than hydrolysate. Moreover, the pH rose from 4.6 ± 0.14 to 6.5 ± 0.05, and the organic carbon, TN, TP and cation exchange capacity (CEC) of RS increased as well after being filtered, implying that the trapped compounds may have the potential to improve soil quality. This study provides a new insight for hydrolysate application according to its composition characteristics, and helps make the most use of wasted sludge.
Collapse
Affiliation(s)
- Hong Chen
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110044, PR China; School of Life Science, Jinggangshan University, 28 Xueyuan Road, Ji'an, 343009, PR China
| | - Qinhui Ye
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Xiulan Wang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Jun Sheng
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Xin Yu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Shiyi Zhao
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Xiaoming Zou
- School of Life Science, Jinggangshan University, 28 Xueyuan Road, Ji'an, 343009, PR China.
| | - Weiwei Zhang
- Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110044, PR China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| |
Collapse
|
11
|
Wu Y, Peng Z, Wang H, Zhang L, Zeng W, Cao YA, Liao J, Liang Z, Liang Q, Peng Y. Hydraulic retention time optimization achieved unexpectedly high nitrogen removal rate in pilot-scale anaerobic/aerobic/anoxic system for low-strength municipal wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 393:130128. [PMID: 38040313 DOI: 10.1016/j.biortech.2023.130128] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Applications of post-denitrification processes are subjected to low reaction rates caused by a lack of carbon resources. To offer a solution for reaction rate promotion, this research found a pilot-scale anaerobic/aerobic/anoxic bioreactor treating 55-120 m3/d low-strength municipal wastewater for 273 days. A short hydraulic retention time (HRT, 5-6 h) and a high nitrogen removal rate (63.2 ± 9.3 g-N/m3·d) were achieved using HRT optimization. The effluent total nitrogen concentration was maintained at 5.8 ± 1.4 mg/L while operating at a high nitrogen loading rate of 86.2 ± 12.8 g-N/m3·d. The short aeration (1.25-1.5 h) minimized the Glycogen loss. The endogenous denitrification rate increased to above 1.0 mg/(g-VSS·h). The functional genus Ca. Competibacter enriched to 2.3 %, guaranteeing the efficient post-denitrification process. Dechloromonas rose to 1.1 %, aiding in the synchronous phosphorus removal. These findings offered fresh insights into AOA processes to achieve energy/cost-saving wastewater treatment.
Collapse
Affiliation(s)
- You Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhihao Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hanbin Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yu-An Cao
- Zhongshan Public Water Investment Co. Ltd, Zhongshan 528403, PR China
| | - Jiajun Liao
- Zhongshan Public Water Investment Co. Ltd, Zhongshan 528403, PR China
| | - Zihao Liang
- Zhongshan Public Water Investment Co. Ltd, Zhongshan 528403, PR China
| | - Qifeng Liang
- Zhongshan Public Water Investment Co. Ltd, Zhongshan 528403, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
12
|
An Z, Zhang Q, Gao X, Ding J, Shao B, Peng Y. Nitrous oxide emissions in novel wastewater treatment processes: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 391:129950. [PMID: 37926354 DOI: 10.1016/j.biortech.2023.129950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The proliferation of novel wastewater treatment processes has marked recent years, becoming particularly pertinent in light of the strive for carbon neutrality. One area of growing attention within this context is nitrous oxide (N2O) production and emission. This review provides a comprehensive overview of recent research progress on N2O emissions associated with novel wastewater treatment processes, including Anammox, Partial Nitrification, Partial Denitrification, Comammox, Denitrifying Phosphorus Removal, Sulfur-driven Autotrophic Denitrification and n-DAMO. The advantages and challenges of these processes are thoroughly examined, and various mitigation strategies are proposed. An interesting angle that delve into is the potential of endogenous denitrification to act as an N2O sink. Furthermore, the review discusses the potential applications and rationale for novel Anammox-based processes to reduce N2O emissions. The aim is to inform future technology research in this area. Overall, this review aims to shed light on these emerging technologies while encouraging further research and development.
Collapse
Affiliation(s)
- Zeming An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Ding
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Baishuo Shao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
13
|
Liu H, Dong W, Zhao Z, Wang H, Hou Z, Li Y, Zeng Z, Xie J, Wang F, Liu X, Yan Y, Qu Y. Advanced nitrogen removal from low carbon nitrogen ratio domestic sewage via continuous plug-flow anaerobic/oxic/anoxic system: Enhanced by endogenous denitrification. BIORESOURCE TECHNOLOGY 2023; 378:128987. [PMID: 37001701 DOI: 10.1016/j.biortech.2023.128987] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
An anaerobic/oxic/anoxic continuous plug-flow biorereactor was established to derive stable advanced nitrogen removal of oligotrophic domestic wastewater by setting a sludge dual-reflux system and a mixed liquid cross-flow system, while extending the hydraulic retention time in anoxic section. The effluent total inorganic nitrogen was 7.9 ± 2.2 mg N/L, with removal efficiency of 84 ± 3.9%. Results of nitrogen balance calculations indicated that the contribution of simultaneous nitrification and denitrification to total inorganic nitrogen loss in oxic region was 15% during stable stage, and the total inorganic nitrogen removal by endogenous-denitrification and enhanced exogenous-denitrification in the anoxic region was 39.9%. Prolongation of hydraulic retention time in anoxic segment is the critical reason for enhancing endogenous-denitrification, and cross-flow system is an important measure to improve exogenous-denitrification. This study provides new insights into bridging the gap between energy-saving and high-level nitrogen removal from municipal wastewater with low carbon to nitrogen ratios.
Collapse
Affiliation(s)
- Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yanchen Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhiwei Zeng
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jin Xie
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Fupeng Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xueyon Liu
- China Northeast Municipal Engineering Design & Research Institute Co. Ltd., Changchun 130021, China
| | - Yu Yan
- China Northeast Municipal Engineering Design & Research Institute Co. Ltd., Changchun 130021, China
| | - Yanhui Qu
- China Northeast Municipal Engineering Design & Research Institute Co. Ltd., Changchun 130021, China
| |
Collapse
|
14
|
Wang H, Zhang L, Dan Q, Zhang Y, Wang S, Zhang Q, Li X, Wang C, Peng Y. Ultra-high nitrogen removal from real municipal wastewater using selective enhancement of glycogen accumulating organisms (GAOs) in a partial nitrification-anammox (PNA) system. WATER RESEARCH 2023; 230:119594. [PMID: 36638736 DOI: 10.1016/j.watres.2023.119594] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Integrating endogenous denitrification (ED) into partial nitrification-anammox (PNA) systems by adequately utilizing organics in municipal wastewater is a promising approach to improve nitrogen removal efficiency (NRE). In this study, a novel strategy to inhibit phosphorus-accumulating organisms (PAOs) by inducing phosphorus release and exclusion was adopted intermittently, optimizing organics allocation between PAOs and glycogen-accumulating organisms (GAOs). Enhanced ED-synergized anammox was established to treat real municipal wastewater, achieving an NRE of 97.5±2.2% and effluent total inorganic nitrogen (TIN) of less than 2.0 mg/L. With low poly-phosphorus (poly-P) levels (poly-P/VSS below 0.01 (w/w)), glycogen accumulating metabolism (GAM) acquired organics exceeded that of phosphorus accumulating metabolism (PAM) and dominated endogenous metabolism. Ca. Competibacter (GAO) dominated the community following phosphorus-rich supernatant exclusion, with abundance increasing from 3.4% to 5.7%, accompanied by enhanced ED capacity (0.2 to 1.4 mg N/g VSS /h). The enriched subgroups (GB4, GB5) of Ca. Competibcater established a consistent nitrate cycle with anammox bacteria (AnAOB) through endogenous partial denitrification (EPD) at a ∆NO2--N/∆NH4+-N of 0.91±0.11, guaranteeing the maintenance of AnAOB abundance and performance. These results provide new insights into the flexibility of PNA for the energy-efficient treatment of low-strength ammonium wastewater.
Collapse
Affiliation(s)
- Hanbin Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiongpeng Dan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yingxin Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chuanxin Wang
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd, Guangdong 510075, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
15
|
Xie C, Zhang Q, Li X, Dan Q, Qin L, Wang C, Wang S, Peng Y. Highly efficient transformation of slowly-biodegradable organic matter into endogenous polymers during hydrolytic fermentation for achieving effective nitrite production by endogenous partial denitrification. WATER RESEARCH 2023; 230:119537. [PMID: 36587520 DOI: 10.1016/j.watres.2022.119537] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The utilization of slowly-biodegradable organic matter (SBOM) to provide nitrite efficiently for anaerobic ammonia oxidation (anammox) process is an essential topic. High nitrite concentration without inhibition of exogenous organic matter is optimal condition for anammox process. In this study, hydrolytic fermentation (HF) of SBOM was applied to drive an endogenous partial denitrification (EPD) process (nitrate to nitrite) during an anaerobic-anoxic operation in a starch-fed system. With a limited production of exogenous organic matter (22.3 ± 4.9 mg COD/L), 79.0% of SBOM was transformed into poly-hydroxyalkanoates (PHA) through a pathway of simultaneous HF-absorption and endogenous polymer synthesis, corresponding to a hydrolytic fermentation ratio of 86.0%. A high nitrate to nitrite transformation ratio of 85.4% was achieved under an influent carbon to nitrogen ratio of 4.8. Denitrifying glycogen-accumulating organisms (DGAOs) was enriched from 0.6% to 10.9%, with an increase from 0.7 to 1.0 of nitrate reductase genes to nitrite reductase genes ratio. Subsequently, nitrate reduction rate was 5.6-fold higher than the nitrate reduction rate. A prominent migration of exogenous complete denitrification to EPD was accomplished. Furthermore, the starch-fed system exhibited performance with significant adaptability and stability in the presence of different SBOMs (dissolved protein and primary sludge). Therefore, the HF-EPD system achieved efficient nitrite production through EPD with the addition of various SBOMs, providing a potential alternative to anammox systems for the treatment of SBOM-rich wastewater.
Collapse
Affiliation(s)
- Chen Xie
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiongpeng Dan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Luyang Qin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Chuanxin Wang
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd., China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
16
|
Huang J, Xiao Y, Chen B. Nutrients removal by Olivibacter jilunii immobilized on activated carbon for aquaculture wastewater treatment: ppk1 gene and bacterial community structure. BIORESOURCE TECHNOLOGY 2023; 370:128494. [PMID: 36526116 DOI: 10.1016/j.biortech.2022.128494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In this study, immobilized biological activated carbon (IBAC) mediated with Olivibacter jilunii (strain PAO-9) was utilized to treat aquaculture wastewater for nutrients removal. IBAC with strain PAO-9 could load the greatest ppk1 gene copy numbers (129524.6) per gram on activated carbon at 28 °C for 2 d in 120 rpm of stirring speed and 2 d in stationary condition. Moreover, the results about the nutrients removal and microbiology community structure showed that strain PAO-9 on IBAC could alter the structure and diversity of microbial communities and then promoted to remove the total phosphorus and total nitrogen of eel aquaculture wastewater. The highest total phosphorus, chemical oxygen demand, ammonia and total nitrogen of the wastewater treated by strain PAO-9 on IBAC were 96.1 %, 98.0 %, 100.0 % and 97.4 %, respectively. In all, O. jilunii PAO-9 immobilized activated carbon was a potential and effective approach to remove the nutrients of eel aquaculture wastewater.
Collapse
Affiliation(s)
- Jing Huang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 35003, China
| | - Yanchun Xiao
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 35003, China
| | - Biao Chen
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 35003, China.
| |
Collapse
|
17
|
Zhang S, Su J, Ali A, Huang T, Sun Y, Ren Y. Hydrophilic spongy biochar crosslinked with starch and polyvinyl alcohol biocarrier for nitrate, phosphorus, and cadmium removal in low carbon wastewater: Enhanced performance mechanism and detoxification. BIORESOURCE TECHNOLOGY 2022; 362:127875. [PMID: 36049713 DOI: 10.1016/j.biortech.2022.127875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
This study aims to develop a functional biocarrier with hydrophilic spongy biochar crosslinked with starch and polyvinyl alcohol (WSB/starch-PVA) for simultaneous removal of NO3--N, total phosphorus (TP) and Cd2+ in low carbon wastewater. Results showed that the WSB/starch-PVA bioreactor achieved the maximum NO3--N removal efficiency in subphase 1.2 with 98.07 % (3.64 mg L-1h-1) versus control (75.30 %, 2.81 mg L-1h-1), and removed 54.84 % and 73.97 % of TP and Cd2+. Material characterization suggested that functional groups (related to C, N and O) on biocarrier and biofilm, and biogenic co-precipitation facilitated TP and Cd2+ removal. The WSB made the biocarrier pores larger and regular, and decreased fluorescent soluble microbial products. The predicted metagenome further suggested that central citrate cycle, oxidative phosphorylation of bio-community, and NO3--N removal were enhanced. Functions for microbial induced co-precipitation, Cd2+ transport/efflux, antioxidants, and enhanced biofilm formation favored the NO3--N/TP removal and Cd2+ detoxification.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
18
|
Zhang L, Lin Y, Zhu Z, Li X, Wang S, Peng Y. Rapidly recovering and maintaining simultaneous partial nitrification, denitrification and anammox process through hydroxylamine addition to advance nitrogen removal from domestic sewage. BIORESOURCE TECHNOLOGY 2022; 360:127645. [PMID: 35868463 DOI: 10.1016/j.biortech.2022.127645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The collapse of simultaneous partial nitrification, denitrification and anammox (SPNDA) system, caused by the destruction of partial nitrification (PN), is the most likely phenomenon to occur. Therefore, recovering the process quickly and maintaining efficient nitrogen removal is a valuable topic for research. In the anaerobic/aerobic/anoxic operation mode, SPNDA process was used to treat domestic sewage in a sequencing batch biofilm reactor. After the deterioration of PN effect, with the addition of hydroxylamine, the activity of ammonia-oxidizing bacteria in the nitrobacteria increased (61.0-91.3 %), whereas the accumulation of nitrite quickly recovered to 90.4 % within 5 days. Meanwhile, the nitrogen removal efficiency improved (61.8-95.6 %) and the effluent TN was 2.1 mg/L. Furthermore, Candidatus Brocadia was enriched (0.50-1.82 %) in the system. The results indicated that the addition of hydroxylamine was an effective strategy to recover and economically maintain the SPNDA process for advanced nitrogen removal from domestic sewage.
Collapse
Affiliation(s)
- Liyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yangang Lin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhuo Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
19
|
Gao X, Xue X, Li L, Peng Y, Yao X, Zhang J, Liu W. Balance nitrogen and phosphorus efficient removal under carbon limitation in pilot-scale demonstration of a novel anaerobic/aerobic/anoxic process. WATER RESEARCH 2022; 223:118991. [PMID: 36001904 DOI: 10.1016/j.watres.2022.118991] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Nutrient removal in carbon limited wastewater with high efficiency and energy saving remains a bottleneck for wastewater treatment plants (WWTPs). This study established a pilot-scale anaerobic/aerobic/anoxic (AOA) system with processing capacity of 100 m3/d for the first time. During almost 300 days of stable operation, enhanced nitrogen and phosphorus removal at a C/N of 5 was achieved, and the concentrations of total nitrogen (TN) and total phosphorus (TP) in effluent were 3.60 ± 1.55 and 0.24 ± 0.13 mg/L. Tetrasphaera and Candidatus Competibacter were the dominant phosphorus accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) in the AOA system. Moreover, the low phosphorus release ensured sufficient intracellular carbon storage by endogenous denitrification, which was the critical factor for nitrogen and phosphorus removal in carbon limited wastewater. The denitrification phosphorus removal (DPR) ability further removed phosphorus and prevented secondary phosphorus release to maintain a low phosphorus concentration in effluent. Finally, rapid start-up, high nutrient removal efficiency and low energy consumption make the proposed AOA process suitable for application in newly constructed and renovated WWTPs.
Collapse
Affiliation(s)
- Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaofei Xue
- Beijing Enterprises Water Group Limited (BEWG), Poly Int Plaza T3, Zone7, Beijing 100102, PR China.
| | - Lingyun Li
- Beijing Enterprises Water Group Limited (BEWG), Poly Int Plaza T3, Zone7, Beijing 100102, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiaoyan Yao
- Beijing Enterprises Water Group Limited (BEWG), Poly Int Plaza T3, Zone7, Beijing 100102, PR China
| | - Jianxing Zhang
- Beijing Enterprises Water Group Limited (BEWG), Poly Int Plaza T3, Zone7, Beijing 100102, PR China
| | - Weihang Liu
- Beijing Enterprises Water Group Limited (BEWG), Poly Int Plaza T3, Zone7, Beijing 100102, PR China
| |
Collapse
|