1
|
Shi A, Guo L, Gu C, Zhan Y, Zhou X, Cheng W. Novel one-step lignin microsphere preparation for oral tissue regeneration applications. Front Bioeng Biotechnol 2025; 12:1521223. [PMID: 39840126 PMCID: PMC11747161 DOI: 10.3389/fbioe.2024.1521223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Lignin is a naturally derived biomacromolecule with excellent biocompatibility and the potential for biomedical application. For the first time, this study isolated nanosized lignin microspheres (LMSs) directly from wheat straw with a polyol-based deep eutectic solvent. The size of these LMSs can be regulated by changing the isolation parameters, ranging from 90 nm to 330 nm. The structures of these LMSs were comprehensively investigated by SEM, gel permeation chromatography (GPC), HSQC NMR, and 31P NMR, which explained the formation mechanism of the hydrophobicity-induced self-assembly. The LMSs show good antioxidation of 52.99%-76.26% toward DPPH. In vitro biomedical tests further revealed that the LMSs at concentrations <25 μg/mL had good biocompatibility toward gingival mesenchymal stem cells (GMSCs) and jaw bone marrow mesenchymal stem cells (JBMMSCs), with a low apoptosis rate, outperforming other lignin materials. The presented results highlighted the application of the nanosized LMSs as a potential biomaterial in oral tissue regeneration.
Collapse
Affiliation(s)
- Anyuan Shi
- Department of Dental Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Li Guo
- Department of Dental Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Chunning Gu
- Department of Dental Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yunni Zhan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Xuelian Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Wei Cheng
- Department of Dental Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Song T, He H, Li X, Liu X, Lv Y, Tao Y, Lu J, Du J, Hu J, Wang H. A green strategy to realize the high value utilization of lignin for hydrogel formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176760. [PMID: 39401595 DOI: 10.1016/j.scitotenv.2024.176760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Grafting lignin extracted from pulping black liquor onto hydrogel not only endows hydrogel with strong adsorption capacity, but also realizes the high value utilization of lignin, thereby alleviating the environmental pressure caused by the exhaust gas generated by direct combustion of black liquor. However, those lignin fragments have lost generous active functional groups as the high temperature polycondensation during industrial production, restricting the improvement of lignin-based hydrogel adsorption capacity. Herein, we propose a strategy combining amination and oxidation to prepare lignin derivatives with low molecular weight and high activity groups. The introduced amino groups promote the Cα-Cβ cleavage of β-O-4 unit and the oxidation treatment converts S-unit hydroxyl to carboxyl. The hydrogel obtained by grafting aminated-oxidized-lignin shows satisfactory adsorption performance with a methylene blue adsorption capacity of 697.47 mg/g (vs. 195.12 mg/g for pristine hydrogel). The retention ability has also been greatly improved that only 0.43 % of the adsorbed methylene blue is released even after 96 h (vs. 5 % within just 12 h for pristine hydrogel). This work not only provides a new strategy for the high-value utilization of biomass resources, but also offers a new idea for the preparation of hydrogels with high adsorption performance.
Collapse
Affiliation(s)
- Tingjun Song
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hong He
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xinling Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xueqian Liu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinwen Hu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Xiao D, Jin Z, Liu W, Ma J. Degradation selectivity for bamboo fiber and parenchyma lignin-carbohydrates complexes (LCC) esters. Int J Biol Macromol 2024; 262:130205. [PMID: 38365148 DOI: 10.1016/j.ijbiomac.2024.130205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The degradation of lignin-carbohydrate complex (LCC) esters has been proven to be crucial for the selective separation of lignocellulosic components. This study utilized Raman microspectroscopy to image the preferential degradation of lignin and LCC esters from the bamboo wall during successive NaOH (0.2 to 5.0 % w/w), H2SO4 (1 to 8 % v/v), and NaClO2 (5 to 20 min) treatments. Raman imaging showed that lignin and LCC esters were selectively removed from the middle lamella of fibers and the secondary wall of parenchyma during NaOH and NaClO2 treatments. In contrast, H2SO4 primarily caused the simultaneous removal of lignin and LCC esters from the fiber wall under harsh conditions (8 %), while the middle lamella of parenchyma was less affected, both morphologically and topochemically. Raman spectral analysis indicated that the band intensity at 1605 cm-1 for lignin and at 1173 cm-1 for LCC esters decreased by >87.0 % in the highly lignified parenchyma secondary wall after a 5.0 % NaOH treatment, while the decrease was <67 % in the fiber wall. Interestingly, a strong linear correlation was observed between LCC esters and carbohydrates in the parenchyma (R2 > 0.912). These findings provide important insights into the graded and classified utilization of bamboo resources.
Collapse
Affiliation(s)
- Derong Xiao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhi Jin
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wenjin Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianfeng Ma
- International Center for Bamboo and Rattan, Key Lab of Bamboo and Rattan Science & Technology, Beijing 100102, China.
| |
Collapse
|
4
|
Bao X, Guo G, Huo W, Li Q, Xu Q, Chen L. Ensiling pretreatment fortified with laccase and microbial inoculants enhances biomass preservation and bioethanol production of alfalfa stems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159442. [PMID: 36252666 DOI: 10.1016/j.scitotenv.2022.159442] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the potential of ensiling pretreatment fortified with laccase and a lactic acid bacteria (LAB) inoculant on improving the utilization of alfalfa stems for bioethanol production. The alfalfa stems were ensiled with no additives (Con), 0.04 % laccase (LA), a LAB inoculant containing Pediococcus pentosaceus at 1 × 106 fresh weight (FW) and Pediococcus acidilactici at 3 × 105 cfu/g FW (PP), and a combination of LA and PP (LAP) for 120 days. By reshaping the bacterial community structure of alfalfa stem silages toward a higher abundance of Lactobacillus, the addition of laccase and LAB inoculant either alone or in combination facilitated lactic acid fermentation to reduce fermentation losses, as evidenced by low concentrations of ammonia nitrogen (53.7 to 68.9 g/kg total nitrogen) and ethanol (2.63 to 3.55 g/kg dry matter). All additive treatments increased lignocellulose degradation and soluble sugars concentrations of alfalfa stem silages. Due to delignification and polyphenol removal, glucan and xylan conversion (70.3 % vs. 35.7 % and 51.6 % vs. 27.9 %, respectively) and ethanol conversion efficiency (53.9 % vs. 26.4 %) of alfalfa stems were greatly increased by ensiling fortified with LA versus Con, and these variables (79.8 % for glucan, 58.7 % for xylan, and 60.1 % for ethanol conversion efficiency) were further enhanced with a synergistic effect of LA and PP fortification. The spearman correlation analysis revealed that bioethanol fermentation of silage biomass was closely related to ensiling parameters and total phenols. In conclusion, ensiling pretreatment with LA and PP combination offered a feasible way to efficient utilization of alfalfa stems for bioethanol production.
Collapse
Affiliation(s)
- Xueyan Bao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Gang Guo
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Wenjie Huo
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Qinghong Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Qingfang Xu
- College of Grassland Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Lei Chen
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China.
| |
Collapse
|
5
|
Huang C, Cheng J, Zhan Y, Liu X, Wang J, Wang Y, Yoo CG, Fang G, Meng X, Ragauskas AJ, Song X. Utilization of guaiacol-based deep eutectic solvent for achieving a sustainable biorefinery. BIORESOURCE TECHNOLOGY 2022; 362:127771. [PMID: 35964916 DOI: 10.1016/j.biortech.2022.127771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
This study proposed a renewable deep eutectic solvent (DES) pretreatment using lignin-derived guaiacol as the hydrogen bond donor. The DES showed excellent biomass fractionation efficiency after the incorporation of trace AlCl3 as the reinforcer, which removed 79.1 % lignin while preserving more than 90 % glucan. The pretreated bamboo exhibited 96.2 % glucan enzymatic hydrolysis yield at only 110 °C. The physicochemical properties of the pretreated solids were comprehensively investigated to explain how the DES fractionation overcame the biomass recalcitrance. The regenerated lignin from the DES pretreatment was also analyzed, which revealed that lignin β-O-4 bond was significantly cleaved. This guaiacol-based DES could greatly contribute to establish a closed-loop biorefinery sequence with high lignin fractionation efficiency and great solvent recyclability.
Collapse
Affiliation(s)
- Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Jinyuan Cheng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Yunni Zhan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Xuze Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Jia Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yunxuan Wang
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210-2781, USA
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210-2781, USA
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA.
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; UTK-ORNL Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xueping Song
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Qin C, Zeng H, Liu B, Zhu J, Wang F, Wang S, Liang C, Huang C, Ma J, Yao S. Efficient removal of residual lignin from eucalyptus pulp via high-concentration chlorine dioxide treatment and its effect on the properties of residual solids. BIORESOURCE TECHNOLOGY 2022; 360:127621. [PMID: 35842067 DOI: 10.1016/j.biortech.2022.127621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
In fact, effectively removing lignin from pulp fibers facilitates the conversion and utilization of cellulose. In this study, the residual lignin in eucalyptus pulp was separated using a high concentration of chlorine dioxide. The effects of chlorine dioxide dosage, temperature, and time on lignin removal were investigated. The optimal conditions are chlorine dioxide dosage 5.0%, reaction temperature 40 °C, and reaction time 30 min. The lignin removal yield is 88.21%. The removal yields of cellulose and hemicellulose are 2.28 and 17.00%, respectively. The treated eucalyptus pulp has higher fiber crystallinity and thermal stability. The carbon content on the fiber surface is significantly reduced. The results show that lignin is removed by efficient oxidation, and the degradation of carbohydrates is inhibited using high concentrations of chlorine dioxide at low temperatures and short reaction times. This provides theoretical support for high value conversion of cellulose.
Collapse
Affiliation(s)
- Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Huali Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiatian Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shuo Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jiliang Ma
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
7
|
Zhan Y, Wang M, Ma T, Li Z. Enhancing the potential production of bioethanol with bamboo by γ-valerolactone/water pretreatment. RSC Adv 2022; 12:16942-16954. [PMID: 35754883 PMCID: PMC9171899 DOI: 10.1039/d2ra02421g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, the effect of the γ-valerolactone (GVL)/H2O pretreatment system on bamboo (Neosinocalamus affinis) for enzymatic hydrolysis and ethanol fermentation was investigated. The performance characterization of the pretreated bamboo substrates, including the chemical composition, the structural characteristics, and the ability to produce bioethanol, were evaluated. The recovered substrates were enzymatically hydrolyzed for 48 h and then fermented to bioethanol. For the cellulose in the raw bamboo material, the highest cellulose-to-glucose conversion yield (CGCY) was achieved at 140 °C for 2 h with GVL : H2O = 8 : 2, which was 73.39%, and the cellulose-to-ethanol conversion yield (CECY) was 67.00%. This indicated that 183.5 kg of bioethanol could be produced per ton of bamboo, which was 9.71-folds higher than that directly converted from the untreated raw bamboo powder. Under these conditions, 50.60% of the active lignin can be recovered and be used as a wood-derived feedstock for further high-valued utilization. Meanwhile, the maximum concentration of fermentation inhibitors formed after pretreatment was about 140.9 mmol L-1, and had weak inhibition to the subsequent reaction. It has been shown that the cellulose could be effectively separated from bamboo and converted into bioethanol through the GVL/H2O pretreatment system.
Collapse
Affiliation(s)
- Yawei Zhan
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology Beijing 100102 China
| | - Meixin Wang
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology Beijing 100102 China
| | - Tengfei Ma
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology Beijing 100102 China
| | - Zhiqiang Li
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology Beijing 100102 China
| |
Collapse
|
8
|
Hu X, Wang H, Liu Q, Liao Y, Wang C, Ma L. Comparative study on the hydrogenolysis performance of solid residues from different bamboo pretreatments. BIORESOURCE TECHNOLOGY 2022; 352:127095. [PMID: 35367326 DOI: 10.1016/j.biortech.2022.127095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Both alkaline organosolv and formaldehyde stabilization pretreatment can yield high-quality lignin by preventing condensation. For the hydrogenolysis of the pretreated solid residues, the highest yield of C2-C4 chemicals was 66.8% under alkaline organosolv pretreatment for 60 min. Specifically, the crimped fibers and residual lignin and hemicellulose increased the surface roughness of the residue by 40.6%, the crystallinity index decreased to 44.4%, and the crystal size was reduced to 2.15 nm, which in turn promoted hydrogenolysis of the residue. However, the increase of crystallinity and crystal size and the decrease in surface roughness of the formaldehyde stabilization pretreatment residue greatly hindered the conversion of polysaccharides. In addition, residual formaldehyde on the residue may also inhibit catalyst activity. Overall, this study provides novel perspectives on the full utilization of biomass, as well as new insights into the conversion of polysaccharides.
Collapse
Affiliation(s)
- Xiaohong Hu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Qiying Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yuhe Liao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|