1
|
Zhang L, Liu K, Huang D, Gao Y, Li J. Analysis of the regulation mechanism for salt-tolerant anammox process: process performance and metabolic insights. ENVIRONMENTAL TECHNOLOGY 2025; 46:2240-2253. [PMID: 39557624 DOI: 10.1080/09593330.2024.2428440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024]
Abstract
In this study, the start-up and microbial domestication of a salt-tolerant functional anammox system was investigated by gradually increasing the salinity level in a stabilized anammox system in the laboratory. After 44 days of stable operation, the salt-tolerant system was successfully activated, at which time the salinity of the influent water was 3 g/L, and the maximum removal efficiency of ammonia nitrogen and nitrite nitrogen in the system reached 94.18% and 96.66%, respectively, and then the ammonia nitrogen and nitrite nitrogen removal efficiency were stabilized at 88.17% and 96.48% after the enrichment domestication for 89 days. The system was operated in the salinity of 10 g/L, with the concentration of each nitrogen compound measured at the same time. The ammonia nitrogen removal efficiency decreased to 59.93% at a salinity of 10 g/L, which had a significant impact on the system. High-throughput sequencing revealed that the system was enriched with a large number of Chloroflexi, the relative abundance of which increased from 19.46% to 52.33%, and the genus of AnAOB was transformed from Candidatus Brocadia to Candidatus Kuenenia, Candidatus Kuenenia, with a percentage of 4.78%. The system successfully achieved the simultaneous removal of ammonia nitrogen and nitrite nitrogen under salinity stress, which to a certain extent indicated that AnAOB could achieve the initiation and enrichment domestication under salinity conditions, and could provide a basis for the efficient and low-consumption treatment of high salinity nitrogen-containing wastewater.HighlightsAnammox reaction can be successfully initiated under low salinity conditionsSalinity of 10 g/L has a severe shock effect on the anammox systemAfter salinity enrichment and domestication, the abundance of norank_f__norank__o___SBR1031 and Candidatus Kuenenia in the anammox reaction reached 26.7% and 4.78%, respectively.
Collapse
Affiliation(s)
- Li Zhang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Kaishu Liu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Diannan Huang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Yunan Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, People's Republic of China
| | - Jiaxin Li
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| |
Collapse
|
2
|
Xu A, Gao D, Wu WM, Gong X, Liang H. Enhanced denitrification using iron modified biochar under low carbon source condition: Modulating community assembly, allocating carbon metabolism and facilitating electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125354. [PMID: 40222078 DOI: 10.1016/j.jenvman.2025.125354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Biochar can modulate microbial community structure to enhance denitrification but the activity is still restricted by the availability of electron transfer (ETS) under metabolic imbalance conditions. Here we developed iron (Ⅲ) modified biochar (FeBC) to substantially mitigate this electron limitation, enhance ETS and accelerate denitrification reaction via intracellular metabolism and community interaction. The results demonstrated that FeBC could significantly improve the denitrification performance, the nitrate removal rate was significantly increased by 30 % at C/N ratio of 3 (W/W) with little nitrite and nitrous oxide accumulation, attributing to the enhanced activities of the ETS and denitrifying reductases and complex microbial interactions via increased abundance of microorganisms involved in carbon and nitrogen transformations. Biochemical quantification and electrochemical analysis, revealed that FeBC activated the acceleration of the ETS process. Comparative metagenome analyses indicated that upregulating key enzymes in the tricarboxylic acid cycle was the potential respiratory enzyme associated with FeBC-mediated ETS. NADH/NAD+ circulation stimulate the startup of carbon metabolism. This energy-linked mechanism could provide ATP for denitrification. This study revealed the functional roles of FeBC in mediating ETS and regulating the bacterial community to achieve enhanced denitrification.
Collapse
Affiliation(s)
- Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305-4020, USA
| | - Xiaofei Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
3
|
Ruangrit K, Phinyo K, Chailungka S, Duangjan K, Naree A, Thasana J, Kamopas W, Seanpong S, Pekkoh J, Noirungsee N. Enhanced nitrate removal in aquatic systems using biochar immobilized with algicidal Bacillus sp. AK3 and denitrifying Alcaligenes sp. M3: A synergistic approach. PLoS One 2025; 20:e0318416. [PMID: 40043042 PMCID: PMC11882090 DOI: 10.1371/journal.pone.0318416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/15/2025] [Indexed: 05/13/2025] Open
Abstract
This study investigates the effectiveness of biochar immobilized with algicidal Bacillus sp. AK3 and denitrifying Alcaligenes sp. M3 in mitigating harmful algal blooms (HABs) and reducing nitrate pollution in aquatic environments. Over a six-day period, we analyzed changes in algal bloom-forming Microcystis density, chlorophyll-a levels (indicative of algal biomass), nitrate concentration, and microbial community composition in water treated with biochar and Bacillus sp. AK3 and Alcaligenes sp. M3-immobilized biochar. In water treatment using the AK3 and M3-immobilized biochar, Microcystis density decreased from 600,000 cells/mL to 80,000 cells/mL, and chlorophyll-a concentrations also substantially reduced, from 85.7 µg/L initially to 42.8 µg/L. Nitrate concentrations in the AK3 and M3-immobilized biochar treatment significantly decreased from approximately 23 mg/L to around 14 mg/L by Day 6, demonstrating the enhanced denitrification capabilities of the immobilized Alcaligenes sp. M3 and associated bacterial communities. The results also showed significant shifts in bacterial communities, with a decrease in Microcystis, highlighting the specific algicidal activity of Bacillus sp. AK3. The study underscores the potential of biochar-based treatments as a sustainable and effective approach for improving water quality and mitigating the environmental impacts of nutrient pollution and HABs.
Collapse
Affiliation(s)
- Khomsan Ruangrit
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
| | - Kittiya Phinyo
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Sahassawat Chailungka
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kritsana Duangjan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Apitchaya Naree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jearanai Thasana
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Wassana Kamopas
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
- Thermal System Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
| | - Senoch Seanpong
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Jeeraporn Pekkoh
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttapol Noirungsee
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Li Y, Dong W, Hou Z, Liu H, Shi K, Chen S, Wang H. Insight into enhanced enrichment and nitrogen removal performance of Anammox bacteria with novel biochar/tourmaline polyurethane sponge modified biocarrier. BIORESOURCE TECHNOLOGY 2025; 418:131946. [PMID: 39643055 DOI: 10.1016/j.biortech.2024.131946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
A novel biochar/tourmaline polyurethane sponge modified biocarrier (BTP) could enhance Anammox bacteria (AnAOB) enrichment and nitrogen removal performance. With higher hydrophilicity and specific surface area, BTP significantly improved total inorganic nitrogen (TIN) removal efficiency to 80 ± 2 %, compared to unmodified biocarrier of 67 ± 3 % when influent TIN reached 633.9 ± 22.0 mg/L. BTP stimulated the upregulation of amino acid synthases genes abundance and improved protein secretion in extracellular polymer substances (EPS). Moreover, significant increases were found in heme concentration, specific anammox activity and hydrazine dehydrogenase of AnAOB with BTP compared to unmodified biocarrier. Extracellular electron transfer pathway of AnAOB was improved by BTP via upregulating cytochrome C and ferredoxin synthesis. Candidatus Brocadia was the main genus in Anammox biofilm, with relative abundance of 20.1 % and 27.6 % in the control and BTP, respectively, which explained the improvement of nitrogen removal performance.
Collapse
Affiliation(s)
- Yanchen Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Kaiyuan Shi
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shuo Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
5
|
Cui S, Wang R, Chen Q, Pugliese L, Wu S. Geobatteries in environmental biogeochemistry: Electron transfer and utilization. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100446. [PMID: 39104555 PMCID: PMC11298864 DOI: 10.1016/j.ese.2024.100446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 08/07/2024]
Abstract
The efficiency of direct electron flow from electron donors to electron acceptors in redox reactions is significantly influenced by the spatial separation of these components. Geobatteries, a class of redox-active substances naturally present in soil-water systems, act as electron reservoirs, reversibly donating, storing, and accepting electrons. This capability allows the temporal and spatial decoupling of redox half-reactions, providing a flexible electron transfer mechanism. In this review, we systematically examine the critical role of geobatteries in influencing electron transfer and utilization in environmental biogeochemical processes. Typical redox-active centers within geobatteries, such as quinone-like moieties, nitrogen- and sulfur-containing groups, and variable-valent metals, possess the potential to repeatedly charge and discharge. Various characterization techniques, ranging from qualitative methods like elemental analysis, imaging, and spectroscopy, to quantitative techniques such as chemical, spectroscopic, and electrochemical methods, have been developed to evaluate this reversible electron transfer capacity. Additionally, current research on the ecological and environmental significance of geobatteries extends beyond natural soil-water systems (e.g., soil carbon cycle) to engineered systems such as water treatment (e.g., nitrogen removal) and waste management (e.g., anaerobic digestion). Despite these advancements, challenges such as the complexity of environmental systems, difficulties in accurately quantifying electron exchange capacity, and scaling-up issues must be addressed to fully unlock their potential. This review underscores both the promise and challenges associated with geobatteries in responding to environmental issues, such as climate change and pollutant transformation.
Collapse
Affiliation(s)
- Shihao Cui
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Rui Wang
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lorenzo Pugliese
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| |
Collapse
|
6
|
Lv PL, Jia C, Wei CH, Zhao HP, Chen R. Biochar modulates intracellular electron transfer for nitrate reduction in denitrifying anaerobic methane oxidizing archaea. BIORESOURCE TECHNOLOGY 2024; 406:130998. [PMID: 38885730 DOI: 10.1016/j.biortech.2024.130998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Denitrifying anaerobic methane oxidizing (DAMO) archaea plays a significant role in simultaneously nitrogen removal and methane mitigation, yet its limited metabolic activity hinders engineering applications. This study employed biochar to explore its potential for enhancing the metabolic activity and nitrate reduction capacity of DAMO microorganisms. Sawdust biochar (7 g/L) was found to increase the nitrate reduction rate by 2.85 times, although it did not affect the nitrite reduction rate individually. Scanning electron microscopy (SEM) and fluorescence excitation-emission matrix (EEM) analyses revealed that biochar promoted microbial aggregation, and stimulated the secretion of extracellular polymeric substances (EPS). Moreover, biochar bolstered the redox capacity and conductivity of the biofilm, notably enhancing the activity of the electron transfer system by 1.65 times. Key genes involved in intracellular electron transport (Hdr, MHC, Rnf) and membrane transport proteins (BBP, ABC, NDH) of archaea were significantly up-regulated. These findings suggest that biochar regulates electrons generated by reverse methanogenesis to the membrane for nitrate reduction.
Collapse
Affiliation(s)
- Pan-Long Lv
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Chuan Jia
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Chi-Hang Wei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
7
|
Zhang L, Jiang Q, Huang D, Bin Y, Luo D, Gao Y. Study on the mechanism of enhanced anaerobic ammonia oxidation performance by extracellular electron acceptor biochar. ENVIRONMENTAL TECHNOLOGY 2024; 45:4062-4072. [PMID: 37477378 DOI: 10.1080/09593330.2023.2240489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/04/2023] [Indexed: 07/22/2023]
Abstract
ABSTRACTAnaerobic ammonia oxidation process has the advantages of energy and cost reduction, therefore, it has been considered as one of the main alternatives to conventional biological denitrification process in recent years. Biochar has been applied in the anammox process for nitrogen removal efficiency. But, due to its extracellular electron transfer capacity and abundance of redox-specific functional groups, which served as extracellular electron acceptor to anaerobically oxidize NH4+ is still controversy. In this study, the anaerobic ammonia oxidation was investigated when biochar was used as electron acceptor in the wastewater. According to the optimal process variables determined in the batch tests, when the influent NH4+-N concentration in the anaerobic ammonia oxidation reaction was 30-50 mg/L and the biochar dosing was at 10 g/L, it showed some promotion in the long-term experiments. The anaerobic ammonia oxidation process with biochar as the electron acceptor reached more than 60% NH4+-N removal efficiency in the system, and the ΔNO3--N/ΔNH4+-N ratio reached 0.19 which tended to the theoretical value. After 20 days, the voltage in the system keeps fluctuating about 4 mV, indicated that the functional bacteria using biochar as the electron acceptor gradually dominated the system. In addition, the abundance of norank_f__norank_o__SBR1031 in the Chloroflexi phylum has increased significantly at 29.92%, while the abundance of the major genus Candidatus_Kuenenia in AnAOB has decreased slightly at 11.47%.
Collapse
Affiliation(s)
- Li Zhang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Qi Jiang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Diannan Huang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Ye Bin
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing, People's Republic of China
| | - Di Luo
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Yunan Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, People's Republic of China
| |
Collapse
|
8
|
Cao J, Xu A, Gao D, Gong X, Cheng L, Zhou Q, Yang T, Gong F, Liu Z, Liang H. Enhance PD/A biofilm formation via a novel biochar/tourmaline modified-biocarriers to treat low-strength contaminated surface water: Initial adhesion and high-substrate microenvironment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121803. [PMID: 39002458 DOI: 10.1016/j.jenvman.2024.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
In this work, a novel polyurethane carrier modified with biochar and tourmaline/zeolite powder at ratio of 1:1 and 1:2 was developed to promote the formation of biofilms and the synergy of overall bacterial activity for Partial Denitrification/Anammox to treat low-nitrogen contaminated surface water. Based on the batch experiment, the modified biocarrier, BTP2 (biochar: tourmaline = 2: 1), exhibited the highest total nitrogen removal efficiency (83.63%) under influent total nitrogen of 15 mg/L and COD/NO3- of 3. The dense biofilm was formed in inner side of biocarrier owing to the increased surface roughness and various functional groups suggested by scanning electron microscopy and Fourier-transform infrared analysis. The EPS content increased from 200.15 to 220.26 mg/g VSS in BTP2 system. Besides, the rapid NH4+ capture and organics release of the modified carrier fueled the growth of anammox and denitrification bacteria, with the activity of 2.13 ± 0.52 mg N/gVSS/h and 6.70 ± 0.52 mg N/gVSS/h (BTP2). High-throughput sequencing unraveled the increased abundances of Candidatus_Competibacter (0.82%), Thauera (0.60%) and Candidatus_Brocadia (0.55%) which was responsible for the synergy of incomplete reduction of NO3- to NO2- and NH4+ oxidation. Overall, this study provided a valid and simple-control guide for biofilm formation towards rapid enrichment and great collaboration of Anammox and denitrification bacteria.
Collapse
Affiliation(s)
- Jiashuo Cao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Xiaofei Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lang Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qixiang Zhou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Tianfu Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Fugeng Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zhenkun Liu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
9
|
Eng Nkonogumo PL, Zhu Z, Emmanuel N, Zhang X, Zhou L, Wu P. Novel and innovative approaches to partial denitrification coupled with anammox: A critical review. CHEMOSPHERE 2024; 358:142066. [PMID: 38670502 DOI: 10.1016/j.chemosphere.2024.142066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The partial denitrification (PD) coupled with anaerobic ammonium oxidation (Anammox) (PD/A) process is a unique biological denitrification method for sewage that concurrently removes nitrate (NO3--N) and ammonium (NH4+-N) in sewage. Comparing PD/A to conventional nitrification and denitrification technologies, noticeable improvements are shown in energy consumption, carbon source demand, sludge generation and emissions of greenhouse gasses. The PD is vital to obtaining nitrites (NO2--N) in the Anammox process. This paper provided valuable insight by introduced the basic principles and characteristics of the process and then summarized the strengthening strategies. The functional microorganisms and microbial competition have been discussed in details, the S-dependent denitrification-anammox has been analyzed in this review paper. Important factors affecting the PD/A process were examined from different aspects, and finally, the paper pointed out the shortcomings of the coupling process in experimental research and engineering applications. Thus, this research provided insightful information for the PD/A process's optimization technique in later treating many types of real and nitrate-based wastewater. The review paper also provided the prospective economic and environmental position for the actual design implementation of the PD/A process in the years to come.
Collapse
Affiliation(s)
- Paul Luchanganya Eng Nkonogumo
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zixuan Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Nshimiyimana Emmanuel
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
10
|
Lv X, Zhang W, Deng J, Feng S, Zhan H. Pyrite and humus soil-coupled mixotrophic denitrification system for efficient nitrate and phosphate removal. ENVIRONMENTAL RESEARCH 2024; 247:118105. [PMID: 38224940 DOI: 10.1016/j.envres.2024.118105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Affiliation(s)
- Xin Lv
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Wenxi Zhang
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Jiushuai Deng
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China; Engineering Technology Research Center for Comprehensive Utilization of Rare Earth, Rare Metal and Rare-Scattered in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China; Key Laboratory of Separation and Processing of Symbiotic-Associated Mineral Resources in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China.
| | - Shengyuan Feng
- Jiangxi Gaiya Environm Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| | - Hongzhi Zhan
- Jiangxi Gaiya Environm Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| |
Collapse
|
11
|
Wang S, Zhang M, Chen X, Bi Y, Meng F, Wang C, Liu L, Wang S. Effect of biochar on the SPNA system at ambient temperatures. CHEMOSPHERE 2024; 352:141465. [PMID: 38364918 DOI: 10.1016/j.chemosphere.2024.141465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Biochar has been extensively studied in wastewater treatment systems. However, the role of biochar in the single-stage partial nitritation anammox (SPNA) system remains not fully understood. This study explored the impact of biochar on the SPNA at ambient temperatures (20 °C and 15 °C). The nitrogen removal rate of the system raised from 0.43 to 0.50 g N/(L·d) as the biochar addition was raised from 2 to 4 g/L. Metagenomic analysis revealed that gene abundances of amino sugar metabolism and nucleotide sugar metabolism, amino acid metabolism, and quorum sensing were decreased after the addition of biochar. However, the gene abundance of enzymes synthesizing NADH and trehalose increased, indicating that biochar could stimulate electron transfer reactions in microbial metabolism and assist microorganisms in maintaining a steady state at lower temperatures. The findings of this study provide valuable insights into the mechanism behind the improved nitrogen removal facilitated by biochar in the single-stage partial nitritation anammox system.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Menghan Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Xiaoying Chen
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - LingJie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Siyu Wang
- China Urban Construction Design & Research Institute Co., LTD, China
| |
Collapse
|
12
|
Wei Y, Chen Y, Xia W, Ye M, Li YY. Dynamic pulse approach to enhancing mainstream Anammox process stability: Integrating sidestream support and tackling nitrite-oxidizing bacteria challenges. BIORESOURCE TECHNOLOGY 2024; 395:130327. [PMID: 38242244 DOI: 10.1016/j.biortech.2024.130327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Nitrite-oxidizing bacteria (NOB) seriously threaten the partial nitritation and Anammox (PN/A) process, hindering its mainstream application. Herein, a one-stage PN/A reactor was continuously operated for 245 days under nitrogen loading rate lifted from 0.4 g N/L/d to 0.6 g N/L/d and 0.8 g N/L/d with the nitrogen removal efficiency of 71 %, 64 %, and 41 %, respectively. Furthermore, the NOB species over time was identified as Nitrospira_sp._OLB3, exhibiting an increase of the relative abundance from 0.9 % to 4.3 %. The hydroxyapatite (HAP) granules gradually lost their microbiological function of Anammox bacteria then aged, leading to NOB dominance. Therefore, one "pulse therapy" was introduced and combined with "continuous enhancement" of Anammox sludge supported by sidestream to competitively limit the NOB dynamics. The treatment's effect persisted for around two months. The strategy that returning at least 50 % of the impaired HAP granular sludge to the sidestream for recultivation could fulfill the bottlenecks of mainstream PN/A.
Collapse
Affiliation(s)
- Yanxiao Wei
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Weizhe Xia
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
13
|
You X, Wang S, Chen J. Magnetic biochar accelerates microbial succession and enhances assimilatory nitrate reduction during pig manure composting. ENVIRONMENT INTERNATIONAL 2024; 184:108469. [PMID: 38324928 DOI: 10.1016/j.envint.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Biochar promotes microbial metabolic activities and reduces N2O on aerobic composting. However, the effects of magnetic biochar (MBC) on the microbial succession and N2O emissions during pig manure composting remain unclear. Herein, a 42-day composting experiment was conducted with five treatment regimes: pig manure without biochar (CK), 5 % pig manure-based biochar (5 % PBC), 2 % MBC (2 % MBC), 5 % MBC (5 % MBC) and 7.5 % MBC (7.5 % MBC)), to clarify the variation in functional microorganisms and genes associated with nitrogen and direct interspecies electron transfer via metagenomics. Fourier-transform infrared spectroscopy showed that MBC possessed more stable aromatic structures than pig manure-based biochar (PBC), indicating its greater potential for nitrous oxide reduction. MBC treatments were more effective in composting organic matter and improving the carbon/nitrogen ratio than PBC. The microbial composition during composting varied significantly, with the dominant phyla shifting from Firmicutes to Proteobacteria, Actinobacteria, and Bacteroidota. Network and hierarchical clustering analyses showed that the MBC treatment enhanced the interactions of dominant microbes (Proteobacteria and Bacteroidota) and accelerated the composting process. The biochar addition accelerated assimilatory nitrate reduction and slowed dissimilatory nitrate reduction and denitrification. The Mantel test demonstrated that magnetic biochar potentially helped regulate composting nutrients and affected functional nitrogen genes. These findings shed light on the role of MBC in mitigating greenhouse gas emissions during aerobic composting.
Collapse
Affiliation(s)
- Xinxin You
- Institute of Eco-environmental Sciences, Wenzhou Academy of Agricultural Sciences, Wenzhou 325006, PR China; Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Academy of Agricultural Sciences, Wenzhou 325006, PR China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, PR China.
| | - Sheng Wang
- Institute of Eco-environmental Sciences, Wenzhou Academy of Agricultural Sciences, Wenzhou 325006, PR China
| | - Junhui Chen
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, PR China
| |
Collapse
|
14
|
Xie J, Gu J, Wang X, Hu T, Sun W, Song Z, Zhang K, Lei L, Wang J, Sun Y. Response characteristics of denitrifying bacteria and denitrifying functional genes to woody peat during pig manure composting. BIORESOURCE TECHNOLOGY 2023; 374:128801. [PMID: 36842510 DOI: 10.1016/j.biortech.2023.128801] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to explore the impacts of adding different proportions of woody peat (WP) (0%(CK), 5%(T1), and 15%(T2)) on denitrification during composting. The results demonstrated that compared with CK, T1 and T2 increased the total Kjeldahl nitrogen content (8% and 14%, respectively) and reduced the nitrate nitrogen (7% and 23%) content after composting. After composting, the abundances of nirK and nirS decreased by 4-9% and 33-35% under T1 and T2, respectively. Adding 15% WP reduced the abundances of key denitrifying bacteria such as Pseudomonas, Pusillimonas, Achromobacter, and Rhizobiales by 5-90%. The main factors that affected denitrification genes were the carbon content, nitrogen form (nitrite nitrogen and ammonium nitrogen), and denitrifying bacteria community. In summary, adding 15% WP has the best ability to reduce nitrogen loss by decreasing the abundances of denitrifying bacteria and denitrifying functional genes, thereby improving the agricultural value of composting products.
Collapse
Affiliation(s)
- Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiyu Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Sciences, Yulin University, Yulin, Shaanxi 719000, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
15
|
Zhang L, Chen Z, Zhu S, Li S, Wei C. Effects of biochar on anaerobic treatment systems: Some perspectives. BIORESOURCE TECHNOLOGY 2023; 367:128226. [PMID: 36328170 DOI: 10.1016/j.biortech.2022.128226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Many anaerobic activities involve carbon, nitrogen, iron, and sulfur cycles. As a well-developed porous material with abundant functional groups, pyrolytic biochar has been widely researched in efforts to promote microbial activities. However, the lack of consensus on the biochar mechanism has limited its practical application. This review summarizes the effects of different pyrolysis temperatures, particle sizes, and dosages of biochar on microbial activities and community in Fe(III) reduction, anaerobic digestion, nitrogen removal, and sulfate reduction systems. It was found that biochar could promote anaerobic activities by stimulating electron transfer, alleviating toxicity, and providing suitable habitats for microbes. However, it inhibits microbial activities by releasing heavy metal ions or persistent free radicals and adsorbing signaling molecules. Finding a balance between the promotion and inhibition of biochar is therefore essential. This review provides valuable perspectives on how to achieve efficient and stable use of biochar in anaerobic systems.
Collapse
Affiliation(s)
- Liqiu Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Zhuokun Chen
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shugeng Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Chunhai Wei
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
16
|
Zungu PV, Kosgey K, Kumari S, Bux F. Effects of antimicrobials in anammox mediated systems: critical review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1551-1564. [PMID: 36178823 DOI: 10.2166/wst.2022.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Anammox-mediated systems are thought to be cost-effective and efficient technologies for removing nitrogen from wastewater by converting nitrite and ammonium into dinitrogen gas. However, there are inhibitory substances that reduce the effectiveness and efficiency of these processes, preventing their widespread application. Antimicrobial agents are among these substances that have been observed to inhibit anammox-mediated processes. Therefore, this review provides a comprehensive overview of the effects of various antimicrobials on the anammox-based systems with emphasis on the effects in different reactor configurations, sludge types and microbial population of anammox-based systems. In addition, this review also discusses the mechanisms by which nitrifying bacteria are inhibited by the antimicrobials. Gaps in knowledge based on this review as well as future research needs have also been suggested. This review gives a better knowledge of antimicrobial effects on anammox-based systems and provides some guidance on the type of system to use to treat antimicrobial-containing wastewater using anammox-based processes.
Collapse
Affiliation(s)
- Phumza Vuyokazi Zungu
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| | - Kiprotich Kosgey
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| |
Collapse
|