1
|
Pires RHM, Simon S, Buzier R, Almeida CMR, Mucha AP, Guibaud G. Comparison of fractionation methods to assess Ni impact on anaerobic digestion: Filtration versus DGT. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:136995. [PMID: 39787929 DOI: 10.1016/j.jhazmat.2024.136995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Excess of trace elements (TE) significantly alters the performances of anaerobic digestors (AD). Due to interactions with organic matter in particular, only a small fraction of TE can effectively interact with the biomass. However, assessing the bioavailable fraction of TE remains an issue. This study focuses on two chemical methods to monitor the potentially bioavailable Ni, selected as a model TE. The determination of the dissolved fraction by microfiltration was selected because it is commonly used, while the determination of the labile fraction by DGT (Diffusive Gradients in Thin films) was tested as it might better assess the bioavailable fraction. Different levels of Ni and ligands (EDTA and extracellular polymeric substances) were added in lab-scale AD reactors to induce AD performance alteration by changes of Ni amount or speciation. The AD performances were evaluated through biogas production and methane content. The results show that monitoring dissolved Ni highlights the alteration of AD performance due to variations of Ni amount but failed to detect alteration by change of speciation. The monitoring of DGT-labile Ni highlights reactor performance alteration by both variation of Ni amount and speciation. DGT therefore appears as an interesting complementary tool to detect potential alterations induced by TE.
Collapse
Affiliation(s)
- Rahul H M Pires
- E2Lim - Eau et Environnement Limoges UR 24133, University of Limoges, Limoges, France; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; FCUP - Faculty of Sciences, University of Porto, Porto, Portugal
| | - Stéphane Simon
- E2Lim - Eau et Environnement Limoges UR 24133, University of Limoges, Limoges, France.
| | - Rémy Buzier
- E2Lim - Eau et Environnement Limoges UR 24133, University of Limoges, Limoges, France
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; FCUP - Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ana P Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; FCUP - Faculty of Sciences, University of Porto, Porto, Portugal
| | - Gilles Guibaud
- E2Lim - Eau et Environnement Limoges UR 24133, University of Limoges, Limoges, France
| |
Collapse
|
2
|
Kegl T, Paramasivan B, Maharaj BC. Mathematical Model-Based Optimization of Trace Metal Dosage in Anaerobic Batch Bioreactors. Bioengineering (Basel) 2025; 12:117. [PMID: 40001637 PMCID: PMC11851510 DOI: 10.3390/bioengineering12020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Anaerobic digestion (AD) is a promising and yet a complex waste-to-energy technology. To optimize such a process, precise modeling is essential. Developing complex, mechanistically inspired AD models can result in an overwhelming number of parameters that require calibration. This study presents a novel approach that considers the role of trace metals (Ca, K, Mg, Na, Co, Cr, Cu, Fe, Ni, Pb, and Zn) in the modeling, numerical simulation, and optimization of the AD process in a batch bioreactor. In this context, BioModel is enhanced by incorporating the influence of metal activities on chemical, biochemical, and physicochemical processes. Trace metal-related parameters are also included in the calibration of all model parameters. The model's reliability is rigorously validated by comparing simulation results with experimental data. The study reveals that perturbations of 5% in model parameter values significantly increase the discrepancy between simulated and experimental results up to threefold. Additionally, the study highlights how precise optimization of metal additives can enhance both the quantity and quality of biogas production. The optimal concentrations of trace metals increased biogas and CH4 production by 5.4% and 13.5%, respectively, while H2, H2S, and NH3 decreased by 28.2%, 43.6%, and 42.5%, respectively.
Collapse
Affiliation(s)
- Tina Kegl
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Balasubramanian Paramasivan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India;
| | - Bikash Chandra Maharaj
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India;
| |
Collapse
|
3
|
Luisa de Castro E Silva H, Robles-Aguilar AA, Akyol Ç, Willems B, Meers E. Potential availability of metals in anaerobic mono- and co-digestion of pig manure and maize. BIORESOURCE TECHNOLOGY 2024; 402:130818. [PMID: 38735342 DOI: 10.1016/j.biortech.2024.130818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
This study aims to analyse the potential availability of essential metals including as Co, Fe, Ni, Zn, Mn, and Cu and non-essential metals such as Pb, Cr, and Cd within anaerobic mono- and co-digestion of pig manure and maize. The metals partitioning was determined using the Modified BCR (European Community Bureau of Reference) sequential extraction at defined intervals over a 45-days period, correlating changes in metals speciation with key digestion variables. The findings revealed that Cr, Cu, Fe, and Pb were predominantly associated with the oxidisable fraction, while Zn, Mn, and Cd were potentially available in both processes. Notably, NH4+-N and the VFAs, except propionic acid, correlated significantly with the available fractions of Co, Mn, Ni, Zn, Cr, and Pb during mono-digestion of pig manure. The wider pH range and the chemical properties of the feedstock in co-digestion resulted in varied correlations between the metals availability and the digestion variables.
Collapse
Affiliation(s)
- Hellen Luisa de Castro E Silva
- Laboratory for Bioresource Recovery, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Ana A Robles-Aguilar
- BETA Technological Center. Futurlab, Can Baumann Ctra de Roda 70, 08500 Vic, Spain
| | - Çağrı Akyol
- Laboratory for Bioresource Recovery, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | | | - Erik Meers
- Laboratory for Bioresource Recovery, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
4
|
He J, Cui X, Chu Z, Jiang Z, Pang H, Xin X, Duan S, Zhong Y. Effect of zero-valent iron (ZVI) and biogas slurry reflux on methane production by anaerobic digestion of waste activated sludge. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10994. [PMID: 38351362 DOI: 10.1002/wer.10994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
This study aimed to improve anaerobic digestion (AD) efficiency through the addition of zero-valent iron (ZVI) and biogas slurry. This paper demonstrated that methane production was most effectively promoted at a biogas slurry reflux ratio of 60%. The introduction of ZVI into anaerobic systems does not enhance its bioavailability. However, both biogas slurry reflux and the combination of ZVI with biogas slurry reflux increase the relative abundance of microorganisms involved in the direct interspecific electron transfer (DIET) process. Among them, the dominant microorganisms Methanosaeta, Methanobacterium, Methanobrevibacter, and Methanolinea accounted for over 60% of the total methanogenic archaea. The Tax4Fun function prediction results indicate that biogas slurry reflux and the combination of ZVI with biogas slurry reflux can increase the content of key enzymes in the acetotrophic and hydrotrophic methanogenesis pathways, thereby strengthening these pathways. The corrosion of ZVI promotes hydrogen production, and the biogas slurry reflux provided additional alkaline and anaerobic microorganisms for the anaerobic system. Their synergistic effect promoted the growth of hydrotrophic methanogens and improved the activities of various enzymes in the hydrolysis and acidification phases, enhanced the system's buffer capacity, and prevented secondary environmental pollution. PRACTITIONER POINTS: Optimal methane production was achieved at a biogas slurry reflux ratio of 60%. Biogas slurry reflux in anaerobic digestion substantially reduced discharge. ZVI addition in combination with biogas slurry reflux facilitates the DIET process.
Collapse
Affiliation(s)
- Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Xinxin Cui
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Zhaorui Chu
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Zhifeng Jiang
- School of Civil Engineering, Guangzhou University, Guangzhou, China
- Architectural Design and Research Institute of Guangdong Province, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi 'an University of Architecture and Technology, Xi 'an, China
| | - Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, China
| | - Shengye Duan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Yijie Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
5
|
Ngo T, Khudur LS, Krohn C, Hassan S, Jansriphibul K, Hakeem IG, Shah K, Surapaneni A, Ball AS. Wood biochar enhances methanogenesis in the anaerobic digestion of chicken manure under ammonia inhibition conditions. Heliyon 2023; 9:e21100. [PMID: 37920507 PMCID: PMC10618790 DOI: 10.1016/j.heliyon.2023.e21100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
The process of breaking down chicken manure through anaerobic digestion is an effective waste management technology. However, chicken manure can be a challenging feedstock, causing ammonia stress and digester instability. This study examined the impacts of adding wood biochar and acid-alkali-treated wood biochar to anaerobically digest chicken manure under conditions of ammonia inhibition. The results highlighted that only the addition of 5 % acid-alkali-treated wood biochar by volume can achieve cumulative methane production close to the typical methane potential range of chicken manure. The treated wood biochar also exhibited highest total ammonia nitrogen removal compared to the Control treatment. Scanning Electron Microscope revealed growing interactions between biochar and methanogens over time. Real-time polymerase chain reaction showed that treated wood biochar produced the highest number of bacterial biomass. In addition, 16S amplicon-based sequencing identified a more robust archaeal community from treated biochar addition. Overall, the acid-alkali treatment of biochar represents an effective method of modifying biochar to improve its performance in anaerobic digestion.
Collapse
Affiliation(s)
- Tien Ngo
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Leadin S. Khudur
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Christian Krohn
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Soulayma Hassan
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Kraiwut Jansriphibul
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Ibrahim Gbolahan Hakeem
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Kalpit Shah
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Andrew S. Ball
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
6
|
Wang Z, Wang S, Zhuang W, Liu J, Meng X, Zhao X, Zheng Z, Chen S, Ying H, Cai Y. Trace elements' deficiency in energy production through methanogenesis process: Focus on the characteristics of organic solid wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163116. [PMID: 36996981 DOI: 10.1016/j.scitotenv.2023.163116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Excessive or insufficient supplementation of trace elements (TEs) limits the progression of anaerobic digestion. The main reason for this is the lack of sufficient understanding of digestion substrate characteristics, which significantly affects the demand for TEs. In this review, the relationship between TEs requirements and substrate characteristics is discussed. We mainly focus on three aspects. 1) The basis for TE optimization and existing problems: The optimization of TEs often based on the total solids (TS) or volatile solids (VS) of substrates, does not fully consider substrate characteristics. 2) TE deficiency mechanisms for different types of substrates: nitrogen-rich, sulfur-rich, TE-poor, and easily hydrolyzed substrates are the four main types of substrates. The mechanisms underlying TEs deficiency in the different substrates are investigated. 3) Regulation of TE bioavailability: characteristics of substrates affect digestion parameters, which disturb the bioavailability TE. Therefore, methods for regulating bioavailability of TEs are discussed.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Wei Zhuang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jinle Liu
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Shanshuai Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya 572025, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China.
| |
Collapse
|
7
|
Cai Y, Shen X, Meng X, Zheng Z, Usman M, Hu K, Zhao X. Syntrophic consortium with the aid of coconut shell-derived biochar enhances methane recovery from ammonia-inhibited anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162182. [PMID: 36773909 DOI: 10.1016/j.scitotenv.2023.162182] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic digestion (AD) of nitrogen-rich substrates often suffers from the issue of ammonia inhibition. Although bioaugmentation has been used to assist AD with high ammonia concentration, the combined effect of domesticated syntrophic consortium (MC) together with biochar on ammonia inhibited AD are still unknown. In the present study, MC was adapted and enriched by purposive domestication. As a novel strategy, coconut shell-derived biochar was used as a carrier to aid the MC. The results showed that the digestion system deteriorated completely without the assistance of MC and biochar when the TAN concentration exceeded 8.0 g L-1. The combination of biochar and MC (B-MC treatment) could restore ammonia inhibition in 10 days and achieved a high methane yield of 357.5 mL g-1 volatile solid, which was 7.5 % higher than that of MC treatment. Syntrophomonas, Syntrophobacter, and Methanoculleus in MC played a critical role in reducing propionic acid and butyric acid content and efficiently producing methane. Their abundances increased 12-fold, 10-fold, and 2-fold, respectively. With the assistance of biochar, MC had a better performance in relieving ammonia inhibition. This could be attributed to two aspects. First, biochar encouraged the growth or colonization of key microorganisms such as propionate and butyrate oxidizing bacteria and ammonia-tolerant archaea. Second, biochar induced the growth of conductive microorganisms such as Geobacter. From the perspective of enzyme genes, biochar increased the abundance of related enzyme genes in butyrate and propionate degradation, acetoclastic and hydrogenotrophic pathways. In conclusion, MC combined with biochar is a potential approach to alleviate ammonia nitrogen inhibition.
Collapse
Affiliation(s)
- Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Xia Shen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A and F University, Yangling, Shaanxi 712100, China.
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Kai Hu
- Shenzhen Derun Biomass Investment Co. Ltd., Shenzhen 518066, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China.
| |
Collapse
|
8
|
Ye M, Li YY. Methanogenic treatment of dairy wastewater: A review of current obstacles and new technological perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161447. [PMID: 36621500 DOI: 10.1016/j.scitotenv.2023.161447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Methanogenic treatment can effectively manage wastewater in the dairy industry. However, its treatment efficiency and stability are problematic due to the feature of wastewater. This review comprehensively summarizes the dairy wastewater characteristics and reveals the mechanisms and impacts of three critical issues in anaerobic treatment, including ammonia and long-chain fatty acid (LCFA) inhibition and trace metal (TM) deficiency. It evaluates current remedial strategies and the implementation of anaerobic membrane bioreactor (AnMBR) technology. It assesses the use of nitrogen-removed effluent return to dilute the influent for solving protein-rich dairy wastewater treatment. It explores the methodology of TM addition to dairy wastewater in accordance with microbial TM content and proliferation. It analyzes the multiple benefits of applying high-solid AnMBR to lipid-rich influent to mitigate LCFA inhibition. Finally, it proposes a promising low-carbon treatment system with enhanced bioenergy recovery, nitrogen removal, and simultaneous phosphorus recovery that could promote carbon neutrality for dairy industry wastewater treatment.
Collapse
Affiliation(s)
- Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
9
|
Ye M, Sun B, Zhu A, Song L, Ha J, Qin Y, Li YY. Characterization of trace metal impact on organic acid metabolism and functional microbial community in treating dairy processing wastewater with thermophilic anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2022; 359:127495. [PMID: 35718246 DOI: 10.1016/j.biortech.2022.127495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The anaerobic digestion (AD) of dairy processing wastewater (DPW) to produce bioenergy is considered promising but also associated with the possibility of an unbalanced organic matter and trace metal (TM) content. In this study, the TM content and its impact on AD were determined in an anaerobic membrane bioreactor operated to treat DPW. The results indicated that a deficiency in TMs resulted in the slow deterioration of the process, reducing biogas production, disrupting the buffer system, and the massive accumulation of organic acid. The deficiency of Co/Ni was significant, while iron fluctuated due to microbial and chemical effects. Syntrophic propionate oxidizing bacteria and methanogen were the main groups suppressed under the TM deficient environment, resulting in AD failure. No inhibitory effect on the lactic acid metabolism was observed. Hence, supplying theoretical TM dosage to DPW was necessary to realize the efficient and stable AD process and robust microbial community.
Collapse
Affiliation(s)
- Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Borchen Sun
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Aijun Zhu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Liuying Song
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Juntong Ha
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
10
|
Cai Y, Zhu M, Meng X, Zhou JL, Zhang H, Shen X. The role of biochar on alleviating ammonia toxicity in anaerobic digestion of nitrogen-rich wastes: A review. BIORESOURCE TECHNOLOGY 2022; 351:126924. [PMID: 35272033 DOI: 10.1016/j.biortech.2022.126924] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 05/16/2023]
Abstract
This paper reviewed the mechanisms of biochar in relieving ammonia inhibition. Biochar affects nitrogen-rich waste's anaerobic digestion (AD) performance through four ways: promotion of direct interspecies electron transfer (DIET) and microbial growth, adsorption, pH buffering, and provision of nutrients. Biochar enhances the DIET pathway by acting as an electron carrier. The role of DIET in relieving ammonia nitrogen may be exaggerated because many related studies don't provide definite evidence. Therefore, some bioinformatics technology should be used to assist in investigating DIET. Biochar absorbs ammonia nitrogen by chemical adsorption (electrostatic attraction, ion exchange, and complexation) and physical adsorption. The absorption efficiency, mainly affected by the properties of biochar, pH and temperature of AD, can reach 50 mg g-1 on average. The biochar addition can buffer pH by reducing the concentrations of VFAs, alleviating ammonia inhibition. In addition, biochar can release trace elements and increase the bioavailability of trace elements.
Collapse
Affiliation(s)
- Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; Department of Biochemical Conversion, Deutsches Biomassforschungszentrum Gemeinnützige GmbH, Torgauer Straße116, 04347 Leipzig, Germany.
| | - Mingming Zhu
- Centre for Climate and Environmental Protection, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control Beijing 100048, China
| | - John L Zhou
- Centre for Green Technology, University of Technology Sydney (UTS), Broadway, NSW 2007, Australia
| | - Huan Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing 210014, China
| | - Xia Shen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A and F University, Yangling, Shaanxi 712100, China
| |
Collapse
|