1
|
Dhanker R, Saxena A, Tiwari A, Kumar Singh P, Kumar Patel A, Dahms HU, Hwang JS, González-Meza GM, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Towards sustainable diatom biorefinery: Recent trends in cultivation and applications. BIORESOURCE TECHNOLOGY 2024; 391:129905. [PMID: 37923226 DOI: 10.1016/j.biortech.2023.129905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Diatoms, with their complex cellular architecture, have been recognized as a source of limitless potential. These microbes are common in freshwater and marine habitats and are essential for primary production and carbon sequestration. They are excellent at utilizing nutrients, providing a sustainable method of treating wastewater while also producing biomass rich in beneficial substances like vitamins, carotenoids, polysaccharides, lipids, omega-3 fatty acids, pigments, and novel bioactive molecules. Additionally, they are highly efficient organisms that can be employed to monitor the environment by acting as trustworthy indicators of water quality. This comprehensive review explores the multifaceted applications of diatoms in a variety of fields, such as bioremediation, aquaculture, value-added products, and other applications. The review set out on a path towards greener, more sustainable methods amicable to both industry and the environment by utilizing theenormous diverse biotechnological potentials of diatoms.
Collapse
Affiliation(s)
- Raunak Dhanker
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Abhishek Saxena
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Archana Tiwari
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India.
| | - Pankaj Kumar Singh
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, ROC; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City-804, Taiwan, ROC
| | - Jiang-Shiou Hwang
- National Taiwan Ocean University, Institute of Marine Biology, Keelung 20224, Taiwan, ROC
| | - Georgia Maria González-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
2
|
Singh PK, Saxena A, Tyagi R, Sindhu R, Binod P, Tiwari A. Biomass valorization of agriculture wastewater grown freshwater diatom Nitzschia sp. for metabolites, antibacterial activity, and biofertilizer. BIORESOURCE TECHNOLOGY 2023; 377:128976. [PMID: 36990328 DOI: 10.1016/j.biortech.2023.128976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The sustainable utilization of agricultural wastewater is a major global challenge. This study evaluated the impact of agricultural fertilizer on the biomass potential of Nitzschia sp. for metabolite production, antibacterial activity, and slow release biofertilizer. Cultivation of Nitzschia sp. in agriculture wastewater (0.5 mg ml-1) exhibited maximum cell density (12×105 cells ml-1), protein content (10.0 mg g-1), and lipid content (14.96%). Carbohydrate and phenol content increases in a dose-dependent manner with 8.27 mg g-1 and 2.05 mg g-1 at a concentration of 2 mg ml-1 respectively. There was a 2.1-fold increment in chrysolaminarin content. Both gram-negative and gram-positive bacteria were susceptible to the antibacterial activity of the biomass. The effects of using diatom biomass as a biofertilizer were evaluated on the growth of periwinkle plants, which showed significant improvements in leaf development, branching at an early stage, flowering, and a marked increase in shoot length. Diatom biorefinery holds immense potential in addressing agriculture wastewater recycling and sustainable generation of high-value compounds.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rashi Tyagi
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India.
| |
Collapse
|
3
|
Nishshanka GKSH, Anthonio RADP, Nimarshana PHV, Ariyadasa TU, Chang JS. Marine microalgae as sustainable feedstock for multi-product biorefineries. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Saxena A, Mishra B, Tiwari A. Mass cultivation of marine diatoms using local salts and its impact on growth and productivity. BIORESOURCE TECHNOLOGY 2022; 352:127128. [PMID: 35398539 DOI: 10.1016/j.biortech.2022.127128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Diatoms are of great interest for many biotechnological applications. The present study highlights the comparative analysis for mass cultivation under the effect of seawater made from table salt (TS), rock salt (RS), and synthetic seawater in the presence of normal silica and induction coupled plasma (ICP) nanosilica (Nano Si) for inducing diatom growth. Out of all the test formulations, RS-f/2 Nano Si showed the best results with maximum cell density (3.16x107±0.04 and 3.24x107±0.05 cells mL-1), carbohydrate (403.0±3.4 and 398.0±8.1 mg g-1), and chrysolaminarin yield (66.2±5.5 and 49.3±5.1 mg g-1) in both Chaetoceros gracilis and Thalassiosira weissflogii respectively. The presence of a rich pigment profile and lipids further highlights the importance of TS and RS for cost-effective mass culturing. Results reveal that mass cultivation of marine diatoms with TS and RS in the presence of nanosilica not only reduces costs but also enhances metabolite production.
Collapse
Affiliation(s)
- Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Bharti Mishra
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India.
| |
Collapse
|