1
|
Pravin R, Baskar G. Technoeconomic and carbon footprint analysis of simulated industrial scale biodiesel production process from mixed macroalgal and non-edible seed oil using sulphonated zinc doped recyclable biochar catalyst. BIORESOURCE TECHNOLOGY 2024; 395:130351. [PMID: 38266785 DOI: 10.1016/j.biortech.2024.130351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
The present research explored the sustainable production of biodiesel from mixed oils of marine macroalgae and non-edible seeds using a sulphonated Zinc doped recyclable biochar catalyst derived from coconut husk. The maximum biodiesel conversion of 94.8 % was yielded with optimized conditions of 10:1 methanol to oil molar ratio, 4.8 % biochar catalyst concentration, 54.5 ℃ temperature and 87.4 min reaction time. A techno-economic assessment provided a favourable return on investment (ROI) of 21.59 % and 4.63 years of reimbursement period, with a calculated minimum selling price of 0.81 $/kg of produced biodiesel. The carbon footprint analysis results estimated an annual emission of 752.07 t CO2 which corresponds to 0.088 kg CO2 emission per kg of biodiesel produced from the simulated process. The study on economic viability and environmental consciousness of biodiesel production not only paves the way for a greener and sustainable future while also contributing to low carbon footprint.
Collapse
Affiliation(s)
- Ravichandran Pravin
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India.
| |
Collapse
|
2
|
Balraj S, Gnana Prakash D, Iyyappan J, Bharathiraja B. Modelling and optimization of biodiesel production from waste fish oil using nano immobilized rPichiapastoris whole cell biocatalyst with response surface methodology and hybrid artificial neural network based approach. BIORESOURCE TECHNOLOGY 2024; 393:130012. [PMID: 37979885 DOI: 10.1016/j.biortech.2023.130012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
In this study, zinc oxide (ZnO) nano particle immobilized recombinant whole cell biocatalyst (rWCB) was used for bioconversion of waste fish oil in to biodiesel in a lab scale packed bed reactor (PBR). Central composite design and hybrid artificial neural network (ANN) models were explored to optimize the production of biodiesel. Developed rWCB exhibited maximum lipase activity at 15 % (v/v) of glutaraldehyde concentration and 6 % (w/v) of ZnO nanoparticles at pH of 7. Maximum biodiesel yield reached about 91.54 ± 1.86 % after 43 h in PBR using hybrid ANN model predicted process conditions of 13.2 % (w/v) of nano immobilized rWCB concentration and 4.7:1 of methanol to oil ratio at 33 °C. Importantly, developed nano immobilized rWCB was adequately stable for commercialization. Thus, production of biodiesel from waste fish oil using ZnO nano immobilized rWCB could become potential candidate for commercialization.
Collapse
Affiliation(s)
- S Balraj
- Deparment of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, Tamil Nadu, India
| | - D Gnana Prakash
- Deparment of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, Tamil Nadu, India.
| | - J Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Science and Technology (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India
| | - B Bharathiraja
- Deparment of Chemical Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India
| |
Collapse
|
3
|
Pravin R, Baskar G, Rokhum SL, Pugazhendhi A. Comprehensive assessment of biorefinery potential for biofuels production from macroalgal biomass: Towards a sustainable circular bioeconomy and greener future. CHEMOSPHERE 2023; 339:139724. [PMID: 37541444 DOI: 10.1016/j.chemosphere.2023.139724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Marine macroalgae have attracted significant interest as a viable resource for biofuel and value-added chemical production due to their abundant availability, low production costs, and high carbohydrate and lipid content. The growing awareness of socio-economic factors worldwide has led to a greater consideration of marine macroalgae as a sustainable source for biofuel production and the generation of valuable products. The integration of biorefinery techniques into biofuel production processes holds immense potential for fostering the development of a circular bioeconomy on a broad scale. Extensive research was focused on the technoeconomic and environmental impact analysis of biofuel production from macroalgal biomass. The integrated biorefinery processes offers valuable pathways for the practical implementation of macroalgae in diverse conversion technologies. These studies provided crucial insights into the large-scale industrial production of biofuels and associated by-products. This review explores the utilization of marine macroalgal biomass for the production of biofuels and biochemicals. It examines the application of assessment tools for evaluating the sustainability of biorefinery processes, including process integration and optimization, life cycle assessment, techno-economic analysis, socio-economic analysis, and multi-criteria decision analysis. The review also discusses the limitations, bottlenecks, challenges, and future perspectives associated with utilizing macroalgal biomass for the production of biofuels and value-added chemicals.
Collapse
Affiliation(s)
- Ravichandran Pravin
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India.
| | | | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico.
| |
Collapse
|
4
|
Saetiao P, Kongrit N, Jitjamnong J, Direksilp C, Cheng CK, Khantikulanon N. Enhancing Sustainable Production of Fatty Acid Methyl Ester from Palm Oil Using Bio-Based Heterogeneous Catalyst: Process Simulation and Techno-Economic Analysis. ACS OMEGA 2023; 8:30598-30611. [PMID: 37636941 PMCID: PMC10448658 DOI: 10.1021/acsomega.3c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
A new sustainable solid carbon catalyst has been developed for biodiesel synthesis using pyrolytic coconut shell ash (CSA). The CSA support was loaded with various amounts of potassium carbonate (K2CO3), and response surface methodology with a central composite design was used to optimize the transesterification process. The best-performing catalyst was the 30 wt % K2CO3/CSA catalyst. The optimal conditions included a catalyst loading of 3.27 wt %, methanol:oil molar ratio of 9.98:1, reaction time of 74 min, and temperature of 65 °C, resulting in an obtained biodiesel yield of 97.14%. This catalyst was reusable for up to four cycles, but a reduction in the biodiesel yield was observed due to potassium ion leaching during the recovery process. A techno-economic analysis to assess the financial viability of the project revealed a net present value of 5.16 million USD for a project lifetime of 20 years, a payback period time of 2.49 years, and an internal rate of return of 44.2%. An environmental assessment to evaluate the impact of global warming potential from the production of biodiesel revealed a lower level of carbon dioxide emission (1401.86 ton/y) than in the conventional process (1784.6 ton/y).
Collapse
Affiliation(s)
- Phonsan Saetiao
- Petroleum
Technology Program, Industrial Technology Department, Faculty of Industrial
Education and Technology, Rajamangala University
of Technology Srivijaya, 2/1 Rachadamnoennork Rd., Boryang, Muang, Songkhla 90000, Thailand
| | - Napaphat Kongrit
- Petroleum
Technology Program, Industrial Technology Department, Faculty of Industrial
Education and Technology, Rajamangala University
of Technology Srivijaya, 2/1 Rachadamnoennork Rd., Boryang, Muang, Songkhla 90000, Thailand
| | - Jakkrapong Jitjamnong
- Petroleum
Technology Program, Industrial Technology Department, Faculty of Industrial
Education and Technology, Rajamangala University
of Technology Srivijaya, 2/1 Rachadamnoennork Rd., Boryang, Muang, Songkhla 90000, Thailand
| | - Chatrawee Direksilp
- Institute
of functional interfaces (IFG), Karlsruhe
Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Karlsruhe, Eggenstein-Leopoldshafen 76344, Germany
| | - Chin Kui Cheng
- Center
for Catalysis and Separation, Department of Chemical Engineering,
College of Engineering, Khalifa University
of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Nonlapan Khantikulanon
- Department
of Environmental Health, Faculty of Public Health, Valaya Alongkorn Rajabhat University under The Royal
Patronage, Khlong 1, Khlong Luang, Pathum Thani 10120, Thailand
| |
Collapse
|
5
|
Ravichandran P, Rajendran N, Al-Ghanim KA, Govindarajan M, Gurunathan B. Investigations on evaluation of marine macroalgae Dictyota bartayresiana oil for industrial scale production of biodiesel through technoeconomic analysis. BIORESOURCE TECHNOLOGY 2023; 374:128769. [PMID: 36841396 DOI: 10.1016/j.biortech.2023.128769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The investigation on utilizing macroalgae for industrial scale biodiesel production is an imperative action needed for commercialization. In the present research work, the biooil from marine macroalgae Dictyota bartayresiana was used for biodiesel production using calcium oxide nanocatalyst synthesized using waste collected from building demolition site. The optimization results obtained were the calcination temperature 573 °C, concentration of catalyst 5.62%, methanol to oil molar ratio 14.36:1, temperature 55.7 °C and time 67.57 min for the transesterification with the biodiesel yield of 89.6%. The techno-economic aspects of biodiesel production were investigated for 20 MT/batch. The return on investment and internal rate of return from the biodiesel production plant was found to be 25.39% and 31.13% respectively. The plant payback period was about 3.94 years with a positive NPV value of about 14,053,000 $/yr. Thus, Dictyota bartayresiana biomass can be efficiently used for the sustainable production of biodiesel.
Collapse
Affiliation(s)
- Pravin Ravichandran
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, Tamil Nadu, India
| | - Naveenkumar Rajendran
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, USA
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, Tamil Nadu, India.
| |
Collapse
|
6
|
Llano T, Arce C, Gallart LE, Perales A, Coz A. Techno-Economic Analysis of Macroalgae Biorefineries: A Comparison between Ethanol and Butanol Facilities. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Ulva rigida seaweed is constituted by ulvan, which is a sulfated polysaccharide with uses in a wide variety of applications. After the ulvan-oriented extraction process, a crystalline and recalcitrant residue, the so-called pulp, appears. In this work, this residue was valorized through a multiple-stage process. The total processing of the algae consists of hot water extraction, acid hydrolysis, ABE fermentation, and distillation in order to obtain not only ulvan but also butanol and bioethanol to be used as biofuels by simulating two third-generation algae-based biorefineries in Aspen Plus v10 software. Third-generation plants do not compete with food and algae biomass, and they do not require delignification nor pretreatment steps, which are usually the bottleneck of second-generation plants. A plant producing butanol as biofuel together with diluted ulvan, acetone, and ethanol as byproducts was modelled in Aspen Plus software. Regarding the profitability of the investment, the plants producing bioethanol and butanol were economically feasible. The economic parameters for the bioethanol and butanol plants were as follows: NPV equal to 27.66 M$ and 16.67 M$, and IRR equal to 46% and 37%, respectively. The discounted return period was acceptable for these types of plants, which were 4.11 and 3.16 years for the ABE biorefinery and the bioethanol biorefinery, respectively.
Collapse
|
7
|
Do Kim P, Park H, Rajendran N, Yu J, Min J, Kim SK, Han J. Economic and Environmentally Viable Preparation of a Biodegradable Polymer Composite from Lignocellulose. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
Wang M, He J, Zhang Y, Tian Y, Xu P, Zhang X, Li Y, Chen J, He L. Application of magnetic hydroxyapatite surface-imprinted polymers in pretreatment for detection of zearalenone in cereal samples. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1201-1202:123297. [DOI: 10.1016/j.jchromb.2022.123297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
|