1
|
Du R, Ando K, Liu R, Deng L, Wang W, Li YY. CO 2 removal from biogas improved stable treatment of low-alkalinity municipal wastewater using anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2025; 416:131821. [PMID: 39549958 DOI: 10.1016/j.biortech.2024.131821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
This study addressed a less-reported issue: the insufficient alkalinity encountered when anaerobic membrane bioreactors (AnMBRs) are used to treat municipal wastewater (MWW). In the present study, a 20-L AnMBR was initiated at an MWW treatment plant. During the initial startup, a continuous decrease in pH was observed. Through the analyses of the balance between HCO3-/CO2 in the biogas and alkalinity in the reactor, the cause of pH instability was determined to be that the alkalinity could not balance the acidity induced by the continuous dissolution of CO2 from biogas in the liquid phase. Therefore, this study employed the in-situ removal of CO2 from biogas using soda lime to reduce the CO2 partial pressure, thereby achieving stable control of the pH in the reactor. This study provides valuable experience and technical support for anaerobic processes for treating low-alkalinity MWW in the future applications.
Collapse
Affiliation(s)
- Runda Du
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Koichi Ando
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
2
|
Lei Z, Zheng J, Liu J, Li Q, Xue J, Yang Y, Kong Z, Li YY, Chen R. Synergic treatment of domestic wastewater and food waste in an anaerobic membrane bioreactor demo plant: Process performance, energy consumption, and greenhouse gas emissions. WATER RESEARCH 2024; 266:122371. [PMID: 39236500 DOI: 10.1016/j.watres.2024.122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Ambient operation and large-scale demonstration have limited the implementation and evaluation of anaerobic membrane bioreactors (AnMBRs) for low-strength wastewater treatment. Here, we studied these issues at an AnMBR demo plant that treats domestic wastewater and food waste together at ambient temperatures (7-28 °C). At varied hydraulic retention times (HRTs, 8-42 h), the AnMBR achieved a COD removal efficiency and biogas production of 80.4% ± 3.9% and 66.5 ± 9.4 NL/m3-Influent, respectively. Moreover, a stable high membrane flux of 14.4 L/m2/h was reached. The electric energy consumption for the AnMBR operation was 0.269-0.433 kW·h/m3, and 49.4%-91.3% could be compensated by the electric energy produced from methane production. At an HRT of 10 h, the AnMBR system demonstrated an impressively low net electric energy consumption of merely 0.05 kW·h/m3, resulting in a net greenhouse gas emission of 0.015 CO2-eq/m3, cutting 85% compared to the conventional activated sludge process. Achievements in this study provide key parameters for the ambient operation of AnMBR and demonstrate that AnMBR is an energy-saving and low-carbon solution for low-strength wastewater treatment.
Collapse
Affiliation(s)
- Zhen Lei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology
| | - Jiale Zheng
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Jiale Liu
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| | - Jingjing Xue
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yuan Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Zhe Kong
- Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
3
|
Wang H, Zhou Q. Electric stimulation mitigated the mixed microplastic inhibition to anaerobic digestion during wastewater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124753. [PMID: 39153540 DOI: 10.1016/j.envpol.2024.124753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The presence of mixed microplastics (MPs) in anaerobic wastewater treatment processes has been shown to impede fermentation performance by suppressing microbial activity. Microbial electrosynthesis (MES), with its extensive potential, offers a promising solution for refractory substances management and methane recovery, achieved through the enhancement of microbial metabolism and interspecies electron transfer. This study, therefore, delves into the functional impacts and the microbial response to MES in the remediation of wastewater contaminated with mixed-MPs. Results indicated that mixed-MPs could inhibit methane production (-52.38%) and substance removal (-26.59%), and MES could effectively mitigate this inhibitory effect (-22.86%, -19.01%). Concurrently, MES also boosts enzymatic activities pivotal for electron transfer, such as cytochrome c and nicotinamide adenine dinucleotide (NADH), as well as those linked to energy metabolism like adenosine triphosphate (ATP). Furthermore, MES bolsters microbial resistance to mixed-MPs, as evidenced by an increase in extracellular polymeric substances (EPS), albeit with a minor rise in reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release. Correspondingly, electric stimulation promoted the enrichment of functional microorganisms associated with fermentation, acetate production, electrogenesis, and methanogenesis, and stimulated elevated expression levels of genes related to methane metabolism. Notably, the Methanothrix-mediated acetoclastic pathway emerges as the predominant methanogenic route, succeeded by the Methanobacterium-driven hydrogenotrophic pathway. Lastly, the study underscores the supportive role of applied voltage and carriers in energy metabolism and substance transport, which are associated with methanogenesis. Overall, MES demonstrates efficacy in mitigating the biotoxicity induced by mixed-MPs exposure and in enhancing anaerobic wastewater treatment and methane recovery.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Science, China West Normal University, Nanchong 637009, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
AbuKhadra D, Dan Grossman A, Al-Ashhab A, Al-Sharabati I, Bernstein R, Herzberg M. The effect of temperature on fouling in anaerobic membrane bioreactor: SMP- and EPS-membrane interactions. WATER RESEARCH 2024; 260:121867. [PMID: 38878312 DOI: 10.1016/j.watres.2024.121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 07/27/2024]
Abstract
Biofouling is the main challenge in the operation of anaerobic membrane bioreactors (AnMBRs). Biofouling strongly depends on temperature; therefore, we hypothesize that the interactions and viscoelastic properties of soluble microbial products (SMP) and extracellular polymeric substances (EPS) vary with temperature, consequently influencing membrane permeability. This study compares the performance of an AnMBR operated at a similar permeate flux at two temperatures. The transmembrane pressure (TMP) rose rapidly after 5 ± 2 days at 25 °C but only after 18 ± 2 days at 35 °C, although the reactor's biological performance was similar at both temperatures, in terms of the efficiency of dissolved organic carbon removal and biogas composition, which were obtained by changing the hydraulic retention time. Using confocal laser scanning microscopy (CLSM), a higher biofilm amount was detected at 25 °C than at 35 °C, while quartz crystal microbalance with dissipation (QCM-D) showed a more adhesive, but less viscous and elastic EPS layer. In situ optical coherence tomography (OCT) of an ultra-filtration membrane, fed with the mixed liquor suspended solids (MLSS) at the two temperatures, revealed that while a higher rate of TMP increase was obtained at 25 °C, the attachment of biomass from MLSS was markedly less. Increased EPS adhesion to the membrane can accelerate TMP increase during the operation of both the AnMBR and the OCT filtration cell. EPS's reduced viscoelasticity at 25 °C suggests reduced floc integrity and possible increased EPS penetration into the membrane pores. Analysis of the structures of the microbial communities constituting the AnMBR flocs and membrane biofilms reveals temperature's effects on microbial richness, diversity, and abundance, which likely influence the observed EPS properties and consequent AnMBR fouling.
Collapse
Affiliation(s)
- Diaa AbuKhadra
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | - Amit Dan Grossman
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | - Ashraf Al-Ashhab
- The Dead Sea and Arava Science Center, Masada 86190, Israel; Ben-Gurion University of the Negev, Eilat campus, Israel
| | | | - Roy Bernstein
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| |
Collapse
|
5
|
Phuc-Hanh Tran D, You SJ, Bui XT, Wang YF, Ramos A. Anaerobic membrane bioreactors for municipal wastewater: Progress in resource and energy recovery improvement approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121855. [PMID: 39025005 DOI: 10.1016/j.jenvman.2024.121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Anaerobic membrane bioreactor (AnMBR) offer promise in municipal wastewater treatment, with potential benefits including high-quality effluent, energy recovery, sludge reduction, and mitigating greenhouse gas emissions. However, AnMBR face hurdles like membrane fouling, low energy recovery, etc. In light of net-zero carbon target and circular economy strategy, this work sought to evaluate novel AnMBR configurations, focusing on performance, fouling mitigation, net-energy generation, and nutrients-enhancing integrated configurations, such as forward osmosis (FO), membrane distillation (MD), bioelectrochemical systems (BES), membrane photobioreactor (MPBR), and partial nitrification-anammox (PN/A). In addition, we highlight the essential role of AnMBR in advancing the circular economy and propose ideas for the water-energy-climate nexus. While AnMBR has made significant progress, challenges, such as fouling and cost-effectiveness persist. Overall, the use of novel configurations and energy recovery strategies can further improve the sustainability and efficiency of AnMBR systems, making them a promising technology for future sustainable municipal wastewater treatment.
Collapse
Affiliation(s)
- Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Viet Nam
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Sustainable Environmental Education Center, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Aubrey Ramos
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| |
Collapse
|
6
|
Liu L, Guo Z, Wang Y, Yin L, Zuo W, Tian Y, Zhang J. Low energy-consumption oriented membrane fouling control strategy in anaerobic fluidized membrane bioreactor. CHEMOSPHERE 2024; 359:142254. [PMID: 38714253 DOI: 10.1016/j.chemosphere.2024.142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Anaerobic fluidized membrane bioreactors (AFMBR) has attracted growing interest as an emerging wastewater treatment technology towards energy recovery from wastewater. AFMBR combines the advantages of anaerobic digestion and membrane bioreactors and shows great potential in overcoming limiting factors such as membrane fouling and low efficiency in treating low-strength wastewater such as domestic sewage. In AFMBR, the fluidized media performs significant role in reducing the membrane fouling, as well as improving the anaerobic microbial activity of AFMBRs. Despite extensive research aimed at mitigating membrane fouling in AFMBR, there has yet to emerge a comprehensive review focusing on strategies for controlling membrane fouling with an emphasis on low energy consumption. Thus, this work overviews the recent progress of AFMBR by summarizing the factors of membrane fouling and energy consumption in AFMBR, and provides targeted in-depth analysis of energy consumption related to membrane fouling control. Additionally, future development directions for AFMBR are also outlooked, and further promotion of AFMBR engineering application is expected. By shedding light on the relationship between energy consumption and membrane fouling control, this review offers a useful information for developing new AFMBR processes with an improved efficiency, low membrane fouling and low energy consumption, and encourages more research efforts and technological advancements in the domain of AFMBR.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ze Guo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yihe Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Linlin Yin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Wang H, Zhou Q. Potential application of bioelectrochemical systems in cold environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172385. [PMID: 38604354 DOI: 10.1016/j.scitotenv.2024.172385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Globally, more than half of the world's regions and populations inhabit psychrophilic and seasonally cold environments. Lower temperatures can inhibit the metabolic activity of microorganisms, thereby restricting the application of traditional biological treatment technologies. Bioelectrochemical systems (BES), which combine electrochemistry and biocatalysis, can enhance the resistance of microorganisms to unfavorable environments through electrical stimulation, thus showing promising applications in low-temperature environments. In this review, we focus on the potential application of BES in such environments, given the relatively limited research in this area due to temperature limitations. We select microbial fuel cells (MFC), microbial electrolytic cells (MEC), and microbial electrosynthesis cells (MES) as the objects of analysis and compare their operational mechanisms and application fields. MFC mainly utilizes the redox potential of microorganisms during substance metabolism to generate electricity, while MEC and MES promote the degradation of refractory substances by augmenting the electrode potential with an applied voltage. Subsequently, we summarize and discuss the application of these three types of BES in low-temperature environments. MFC can be employed for environmental remediation as well as for biosensors to monitor environmental quality, while MEC and MES are primarily intended for hydrogen and methane production. Additionally, we explore the influencing factors for the application of BES in low-temperature environments, including operational parameters, electrodes and membranes, external voltage, oxygen intervention, and reaction devices. Finally, the technical, economic, and environmental feasibility analyses reveal that the application of BES in low-temperature environments has great potential for development.
Collapse
Affiliation(s)
- Hui Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Ye M, Zhu A, Liu J, Li YY. Iron Recycle-Driven Organic Capture and Sidestream Anaerobic Membrane Bioreactor for Revolutionizing Bioenergy Generation in Municipal Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9350-9360. [PMID: 38743617 DOI: 10.1021/acs.est.3c10954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The practicality of intensifying organic matter capture for bioenergy recovery to achieve energy-neutral municipal wastewater treatment is hindered by the lack of sustainable methods. This study developed innovative processes integrating iron recycle-driven organic capture with a sidestream anaerobic membrane bioreactor (AnMBR). Iron-assisted chemically enhanced primary treatment achieved elemental redirection with 75.2% of chemical oxygen demand (COD), 20.2% of nitrogen, and 97.4% of phosphorus captured into the sidestream process as iron-enhanced primary sludge (Fe-PS). A stable and efficient biomethanation of Fe-PS was obtained in AnMBR with a high methane yield of 224 mL/g COD. Consequently, 64.1% of the COD in Fe-PS and 48.2% of the COD in municipal wastewater were converted into bioenergy. The acidification of anaerobically digested sludge at pH = 2 achieved a high iron release efficiency of 96.1% and a sludge reduction of 29.3% in total suspended solids. Ultimately, 87.4% of iron was recycled for coagulant reuse, resulting in a theoretical 70% reduction in chemical costs. The novel system evaluation exhibited a 75.2% improvement in bioenergy recovery and an 83.3% enhancement in net energy compared to the conventional system (primary sedimentation and anaerobic digestion). This self-reliant and novel process can be applied in municipal wastewater treatment to advance energy neutrality at a lower cost.
Collapse
Affiliation(s)
- Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Aijun Zhu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
9
|
Liu L, Wang Y, Liu Y, Wang J, Zheng C, Zuo W, Tian Y, Zhang J. Insight into key interactions between diverse factors and membrane fouling mitigation in anaerobic membrane bioreactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123750. [PMID: 38467364 DOI: 10.1016/j.envpol.2024.123750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Anaerobic membrane bioreactors (AnMBRs) have garnered considerable attention as a low-energy and low-carbon footprint treatment technology. With an increasing number of scholars focusing on AnMBR research, its outstanding performance in the field of water treatment has gradually become evident. However, the primary obstacle to the widespread application of AnMBR technology lies in membrane fouling, which leads to reduced membrane flux and increased energy demand. To ensure the efficient and long-term operation of AnMBRs, effective control of membrane fouling is imperative. Nevertheless, the interactions between various fouling factors are complex, making it challenging to predict the changes in membrane fouling. Therefore, a comprehensive analysis of the fouling factors in AnMBRs is necessary to establish a theoretical basis for subsequent membrane fouling control in AnMBR applications. This review aims to provide a thorough analysis of membrane fouling issues in AnMBR applications, particularly focusing on fouling factors and fouling control. By delving into the mechanisms behind membrane fouling in AnMBRs, this review offers valuable insights into mitigating membrane fouling, thus enhancing the lifespan of membrane components in AnMBRs and identifying potential directions for future AnMBR research.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yihe Wang
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yongxiao Liu
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinghui Wang
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Chengzhi Zheng
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
10
|
Wang T, Li YY. Predictive modeling based on artificial neural networks for membrane fouling in a large pilot-scale anaerobic membrane bioreactor for treating real municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169164. [PMID: 38081428 DOI: 10.1016/j.scitotenv.2023.169164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Membrane fouling is the primary obstacle to applying anaerobic membrane bioreactors (AnMBRs) in municipal wastewater treatment. This issue holds critical significance as efficient wastewater treatment serves as a cornerstone for achieving environmental sustainability. This study uses machine learning to predict membrane fouling, taking advantage of rapid computational and algorithmic advances. Based on the 525-day operation data of a large pilot-scale AnMBR for treating real municipal wastewater, regression prediction was realized using multilayer perceptron (MLP) and long short-term memory (LSTM) artificial neural networks under substantial variations in operating conditions. The models involved employing the organic loading rate, suspended solids concentration, protein concentration in extracellular polymeric substance (EPSp), polysaccharide concentration in EPS (EPSc), reactor temperature, and flux as input features, and transmembrane pressure as the prediction target output. Hyperparameter optimization enhanced the regression prediction accuracies, and the rationality and utility of the MLP model for predicting large-scale AnMBR membrane fouling were confirmed at global and local levels of interpretability analysis. This work not only provides a methodological advance but also underscores the importance of merging environmental engineering with computational advancements to address pressing environmental challenges.
Collapse
Affiliation(s)
- Tianjie Wang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
11
|
Xu B, Gao W, Liao B, Bai H, Qiao Y, Turek W. A Review of Temperature Effects on Membrane Filtration. MEMBRANES 2023; 14:5. [PMID: 38248695 PMCID: PMC10819527 DOI: 10.3390/membranes14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Membrane technology plays a vital role in drinking water and wastewater treatments. Among a number of factors affecting membrane performance, temperature is one of the dominant factors determining membrane performance. In this review, the impact of temperature on membrane structure, fouling, chemical cleaning, and membrane performance is reviewed and discussed with a particular focus on cold temperature effects. The findings from the literature suggest that cold temperatures have detrimental impacts on membrane structure, fouling, and chemical cleaning, and thus could negatively affect membrane filtration operations and performance, while warm and hot temperatures might expand membrane pores, increase membrane flux, improve membrane chemical cleaning efficiency, and interfere with biological processes in membrane bioreactors. The research gaps, challenges, and directions of temperature effects are identified and discussed indepth. Future studies focusing on the impact of temperature on membrane processes used in water and wastewater treatment and the development of methods that could reduce the adverse effect of temperature on membrane operations are needed.
Collapse
Affiliation(s)
- Bochao Xu
- Department of Civil Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada;
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Wa Gao
- Department of Civil Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada;
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Hao Bai
- Department of Mechanical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada; (H.B.); (Y.Q.)
| | - Yuhang Qiao
- Department of Mechanical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada; (H.B.); (Y.Q.)
| | - Walter Turek
- Environment Division, City of Thunder Bay, Victoriaville Civic Centre, 111 Syndicate Ave S., Thunder Bay, ON P7E 6S4, Canada;
| |
Collapse
|
12
|
Wang H, Zhou Q. Dominant factors analyses and challenges of anaerobic digestion under cold environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119378. [PMID: 37883833 DOI: 10.1016/j.jenvman.2023.119378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
With the development of fermentation technology and the improvement of efficiency, anaerobic digestion (AD) has been playing an increasingly primary role in waste treatment and resource recovery. Temperature is undoubtedly the most important factor because it shapes microbial habitats, changes the composition of the microbial community structure, and even affects the expression of related functional genes. More than half of the biosphere is in a long-term or seasonal low-temperature environment (<20 °C), which makes psychrophilic AD have broad application prospects. Therefore, this review discusses the influencing factors and enhancement strategies of psychrophilic AD, which may provide a corresponding reference for future research on low-temperature fermentation. First, the occurrence of AD has been discussed. Then, the adaptation of microorganisms to the low-temperature environment was analyzed. Moreover, the challenges of psychrophilic AD have been reviewed. Meanwhile, the strategies for improving psychrophilic AD are presented. Further, from technology to application, the current situation of psychrophilic AD in pilot-scale tests is described. Finally, the economic and environmental feasibility of psychrophilic AD has been highlighted. In summary, psychrophilic AD is technically feasible, while economic analysis shows that the output benefits cannot fully cover the input costs, and the large-scale practical application of psychrophilic AD is still in its infancy. More research should focus on how to improve fermentation efficiency and reduce the investment cost of psychrophilic AD.
Collapse
Affiliation(s)
- Hui Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
13
|
Yan W, Wang Y, Li Y, Rong C, Wang D, Wang C, Wang Y, Yuen YL, Wong FF, Chui HK, Li YY, Zhang T. Treatment of fresh leachate by anaerobic membrane bioreactor: On-site investigation, long-term performance and response of microbial community. BIORESOURCE TECHNOLOGY 2023; 383:129243. [PMID: 37257727 DOI: 10.1016/j.biortech.2023.129243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
This study proposed fresh leachate treatment with anaerobic membrane bioreactor (AnMBR) based on the on-site investigation of the characteristics of fresh leachate. Temperature-related profiles of fresh leachate properties, like chemical oxygen demand (COD), were observed. In addition, AnMBR achieved a high COD removal of 98% with a maximum organic loading rate (OLR) of 19.27 kg-COD/m3/d at the shortest hydraulic retention time (HRT) of 1.5 d. The microbial analysis implied that the abundant protein and carbohydrate degraders (e.g., Thermovirga and Petrimonas) as well as syntrophic bacteria, such as Syntrophomonas, ensured the effective adaptation of AnMBR to the reduced HRTs. However, an excessive OLR at 36.55 kg-COD/m3/d at HRT of 1 d resulted in a sharp decrease in key microbes, such as archaea (from 37% to 15%), finally leading to the deterioration of AnMBR. This study provides scientific guidance for treating fresh leachate by AnMBR and its full-scale application for high-strength wastewater.
Collapse
Affiliation(s)
- Weifu Yan
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yemei Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Chao Rong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yubo Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yee-Lok Yuen
- Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong Special Administrative Region
| | - Fanny Fong Wong
- Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong Special Administrative Region
| | - Ho-Kwong Chui
- Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong Special Administrative Region
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
14
|
Nabi M, Liang H, Zhou Q, Cao J, Gao D. In-situ membrane fouling control and performance improvement by adding materials in anaerobic membrane bioreactor: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161262. [PMID: 36586290 DOI: 10.1016/j.scitotenv.2022.161262] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) is a promising treatment technique for various types of wastewaters, and is preferred over other conventional aerobic and anaerobic methods. However, membrane fouling is considered a bottleneck in AnMBR system, which technically blocks membrane pores by numerous inorganics, organics, and other microbial substances. Various materials can be added in AnMBR to control membrane fouling and improve anaerobic digestion, and studies reporting the materials addition for this purpose are hereby systematically reviewed. The mechanism of membrane fouling control including compositional changes in extracellular polymeric substances (EPSs) and soluble microbial products (SMPs), materials properties, stimulation of antifouling microbes and alteration in substrate properties by material addition are thoroughly discussed. Nonetheless, this study opens up new research prospects to control membrane fouling of AnMBR, engineered by material, including compositional changes of microbial products (EPS and SMP), replacement of quorum quenching (QQ) by materials, and overall improvement of reactor performance. Regardless of the great research progress achieved previously in membrane fouling control, there is still a long way to go for material-mediated AnMBR applications to be undertaken, particularly for materials coupling, real scale application and molecular based studies on EPSs and SMPs, which were proposed for future researches.
Collapse
Affiliation(s)
- Mohammad Nabi
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Qixiang Zhou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jiashuo Cao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
15
|
Rong C, Luo Z, Wang T, Qin Y, Wu J, Guo Y, Hu Y, Kong Z, Hanaoka T, Sakemi S, Ito M, Kobayashi S, Kobayashi M, Li YY. Biomass retention and microbial segregation to offset the impacts of seasonal temperatures for a pilot-scale integrated fixed-film activated sludge partial nitritation-anammox (IFAS-PN/A) treating anaerobically pretreated municipal wastewater. WATER RESEARCH 2022; 225:119194. [PMID: 36215833 DOI: 10.1016/j.watres.2022.119194] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 05/06/2023]
Abstract
Partial nitritation-anammox (PN/A) is a promising deammonification process to develop energy-neutral wastewater treatment plants. However, the mainstream application of PN/A still faces the challenges of low nitrogen concentration and low temperatures, and has not been studied under a realistic condition of large-scale reactor (kiloliter level), real municipal wastewater (MWW) and seasonal temperatures. In this research, a pilot-scale one-stage PN/A, with integrated fixed-film activated sludge (IFAS) configuration, was operated to treat the real MWW pretreated by anaerobic membrane bioreactor. The removal efficiency of total nitrogen (TN) was 79.4%, 75.7% and 65.9% at 25, 20 and 15°C, corresponding to the effluent TN of 7.3, 9.7 and 12.0 mg/L, respectively. The suppression of ammonium-oxidizing bacteria (AOB) and anammox bacteria (AnAOB) occurred at lower temperatures, and the significant decrease in AOB treatment capacity was the reason for the poorer nitrogen removal at 15°C. Biomass retention and microbial segregation were successfully achieved. Specifically, Candidatus_Brocadia and Candidatus_Kuenenia were main AnAOB genera and mainly enriched on carriers, Nitrosomonas and uncultured f_Chitinophagaceae were main AOB genera and mainly distributed in suspended sludge and retained by sedimentation tank. Moreover, nitrite-oxidizing bacteria (NOB) were sufficiently suppressed by intermittent aeration and low dissolved oxygen, the presence of heterotrophic bacteria upgraded the PN/A to a simultaneous partial nitritation, anammox, denitrification, and COD oxidation (SNADCO) system, which improved the overall removal of TN and COD. The results of this investigation clearly evidence the strong feasibility of PN/A as a mainstream nitrogen removal process in temperate climates.
Collapse
Affiliation(s)
- Chao Rong
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jiang Wu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Yan Guo
- Department of Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Taira Hanaoka
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Shinichi Sakemi
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Masami Ito
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Shigeki Kobayashi
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Masumi Kobayashi
- Separation and Aqua Chemicals Department, Mitsubishi Chemical Corporation, Gate City Osaki East Tower, 11-2 Osaki 1-chome, Shinagawa-Ku, Tokyo 141-0032, Japan
| | - Yu-You Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
16
|
Rong C, Wang T, Luo Z, Hu Y, Kong Z, Qin Y, Li YY. Seasonal and annual energy efficiency of mainstream anaerobic membrane bioreactor (AnMBR) in temperate climates: Assessment in onsite pilot plant and estimation in scaled-up plant. BIORESOURCE TECHNOLOGY 2022; 360:127542. [PMID: 35777641 DOI: 10.1016/j.biortech.2022.127542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The seasonal and annual energy efficiency of mainstream anaerobic membrane bioreactor (AnMBR) was first assessed in an onsite pilot plant (15 m3/d) and then estimated in a scaled-up plant (10,000 m3/d) in temperate climates (15-25 °C). It was found that the annual net electricity demand was 0.100 and 0.090 kWh/m3, and the annual net energy (electricity + heat) demand was -0.158 and -0.309 kWh/m3 under the dissolved methane recovery condition and the non-recovery condition, respectively, demonstrated that the application of mainstream AnMBR in temperate climates is electricity saving and energy positive. The energy efficiency of the AnMBR decreased with temperature drop due to the reduction of methane production, and the increase in biogas sparging to mitigate membrane fouling. Since approximately 26.7%-39.7% of input COD remained in sludge, attention should be paid to recovering this potential energy to improve the overall energy performance of the mainstream AnMBR plants in future.
Collapse
Affiliation(s)
- Chao Rong
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yu Qin
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
17
|
Abstract
In recent years, anaerobic membrane bioreactor (AnMBRs) technology, a combination of a biological reactor and a selective membrane process, has received increasing attention from both industrialists and researchers. Undoubtedly, this is due to the fact that AnMBRs demonstrate several unique advantages. Firstly, this paper addresses fundamentals of the AnMBRs technology and subsequently provides an overview of the current state-of-the art in the municipal and domestic wastewaters treatment by AnMBRs. Since the operating conditions play a key role in further AnMBRs development, the impact of temperature and hydraulic retention time (HRT) on the AnMBRs performance in terms of organic matters removal is presented in detail. Although membrane technologies for wastewaters treatment are known as costly in operation, it was clearly demonstrated that the energy demand of AnMBRs may be lower than that of typical wastewater treatment plants (WWTPs). Moreover, it was indicated that AnMBRs have the potential to be a net energy producer. Consequently, this work builds on a growing body of evidence linking wastewaters treatment with the energy-efficient AnMBRs technology. Finally, the challenges and perspectives related to the full-scale implementation of AnMBRs are highlighted.
Collapse
|