1
|
Zhang K, Mahmood Q, Lv J, Liang N, Zhu X, Li J, Cai J, Zheng P. Sulfide-based autotrophic denitrification process with efficient nitrogen removal under high salinity stress: Threshold behaviors and recovery enhanced via glutamate supplementation. BIORESOURCE TECHNOLOGY 2025; 432:132667. [PMID: 40381811 DOI: 10.1016/j.biortech.2025.132667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/10/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
The sulfide-based autotrophic denitrification (SAD) has become one of the hotspots in the wastewater treatment due to the urgent requirement for carbon emission reduction. However, it faces a great challenge from the high salinity of nitrogenous wastewaters. In this study, a SAD system was investigated to treat the nitrogenous wastewater under high salinity stress, achieving 99.82 % nitrogen removal at 2.57 % salinity. With the further salinity elevation, the SAD system suffered collapse at the salinity of 5.14 %wt, while it was partially reversed by 1 mmol/L glutamate dosing. The good adaptation of SAD system to the high salinity stress was ascribed to the enrichment of salinity-tolerant microbial populations, as well as limited Na+ accumulation and the antioxidant metabolic compensation. Proteobacteria and Campilobacterota were identified as the dominant phyla, and the relative abundance of Proteobacteria were observed to increase with the whole salinity elevation. The high salinity stress on SAD system was ascribed to the combined effect of osmotic stress and ionic toxicity, and the ionic toxicity was inferred as the primary contributor to the performance collapse by inducing the sharp increase of intracellular reactive oxygen species and cellular rupture. Glutamate supplementation mitigated reactive oxygen species -induced oxidative stress and DNA damage, resulting in partial recovery of denitrification performance (60.56 ± 2.64 %). The microbial network analysis and community assembly supported above conclusions. The information of this study is helpful for the innovation and application of SAD processes, even other bioprocesses under the high salinity stress.
Collapse
Affiliation(s)
- Kaiyu Zhang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan; Department of Biology, College of Science, University of Bahrain, Sakhir, Bahrain
| | - Jiayi Lv
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Na Liang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Xiaopeng Zhu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Jinye Li
- Department of Environmental Engineering, China Jiliang University, Hangzhou, China
| | - Jing Cai
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Zhao Y, Dong Y, Kong L, Shoukat A, Ni SQ. Efficient nitrogen removal and elemental sulfur recovery through sulfide-driven partial denitrification coupled with anammox: Strategies based on N/S ratio and HRT. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124464. [PMID: 39946803 DOI: 10.1016/j.jenvman.2025.124464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Sulfide-driven partial denitrification is emerging as one of the most efficient solutions to provide nitrite without carbon addition for anammox system. In this study, the sulfide-driven partial denitrification coupled with anammox (SPDA) process was constructed in one reactor and high nitrogen removal and sulfur recovery efficiencies were realized by optimizing the N/S ratio and hydraulic retention time (HRT). The results of short-term per-experiment showed that the reactor with a N/S ratio of 1 could achieve the best performance, with total nitrogen removal efficiency (TNRE) and elemental sulfur accumulation efficiency (ESAE) up to 88.0% and 53.4%. Subsequently, a long-term experiment was constructed in an up-flow anaerobic sludge blanket reactor (UASB) to determinate optimum HRT. The results indicated that when the HRT was shortened to 6 h (the nitrogen and sulfur load of 0.7 kg N/(m3·d) and 0.8 kg S/(m3·d)) at a N/S ratio of about 1.0, TNRE and ESAE reached 87.0 ± 3.4% and 60.6 ± 2.2%. At that point, the anammox process was the dominant nitrogen removal pathway with an average contribution of 97.7 ± 2.2% to total nitrogen removal. High-throughput sequencing analysis identified Thiobacillus and Sulfurovum as the dominant genera of sulfur-oxidizing bacteria in the SPDA system, and CandidatusKuenenia and CandidatusBrocadia as the dominant anammox bacteria. In addition, the abundance of genes encoding cytochrome bc1 complex and electron transport complex proteins increased after shortening the HRT to 6 h. It was hypothesized that enrichment of genes encoding electron transport may improve nitrite and ammonium transport, thereby increasing nitrogen removal efficiency.
Collapse
Affiliation(s)
- Yiyi Zhao
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Ying Dong
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China; Jiangsu Nanda Huaxing Environmental Technology Co., LTD., Yancheng, Jiangsu, 224051, China
| | - Ling Kong
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Annum Shoukat
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
3
|
Wang J, Zhang F, Wang Z, Liang H, Du Z, Zhang Y, Lu H, Peng Y. Metagenomic insights into nitrite accumulation in sulfur-based denitrification systems utilizing different electron donors: Functional microbial communities and metabolic mechanisms. WATER RESEARCH 2025; 270:122805. [PMID: 39615200 DOI: 10.1016/j.watres.2024.122805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 01/06/2025]
Abstract
Sulfur-based autotrophic denitrification (SADN) offers new pathway for nitrite supply. However, sequential transformation of nitrogen and sulfur forms, and the functional microorganisms driving nitrite accumulation in SADN with different reduced inorganic sulfur compounds (RISCs), remain unclear. Desirable nitrite accumulation was achieved using elemental sulfur (S0-group), sulfide (S2--group) and thiosulfate (S2O32--group) as electron donors. Under equivalent electron supply conditions, S2O32--group exhibited a superior nitrate conversion rate (NCR) of 0.285 kg N/(m³·d) compared to S2--group (0.103 kg N/(m³·d)). Lower NCR in S2--group was attributed to sulfide strongly inhibiting energy metabolism process of TCA cycle, resulting in reduced reaction rates. Moreover, the NCR of S0-group (0.035 kg N/(m³·d)) was poor due to the chemical inertness of S0. Specific microbial communities were selectively enriched in phylum level, with Proteobacteria increasing to an astonished 96.27-98.49 %. Comprehensive analyses of functional genus, genes, and metabolic pathways revealed significant variability in the active functional genus, with even the same genus showed significant metabolic differences in response to different RISCs. In S0-group, Thiomonas (10.0 %) and Acidithiobacillus (5.1 %) were the primary contributor to nitrite accumulation. Thiobacillus was the most abundant sulfur-oxidizing bacteria in S2--group (43.84 %) and S2O32--group (18.92 %). In S2--group, it contributed to nitrite accumulation, while in S2O32--group, it acted as a complete denitrifier (NO3--N→N2). Notably, heterotrophic denitrifying bacteria, Comamonas (12.52 %), were crucial for nitrite accumulation in S2O32--group, predominating NarG while lacking NirK/S. Overall, this work advances our understanding of SADN systems with different RISCs, offering insights for optimizing nitrogen and sulfur removal.
Collapse
Affiliation(s)
- Jiahui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Zhaozhi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Haoran Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ziyi Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yujing Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hongying Lu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
4
|
Wang Z, Yan C, Wang X, Xia S. Double-edged sword effects of sulfate reduction process in sulfur autotrophic denitrification system: Accelerating nitrogen removal and promoting antibiotic resistance genes spread. BIORESOURCE TECHNOLOGY 2024; 409:131239. [PMID: 39122125 DOI: 10.1016/j.biortech.2024.131239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This study proposed the double-edged sword effects of sulfate reduction process on nitrogen removal and antibiotic resistance genes (ARGs) transmission in sulfur autotrophic denitrification system. Excitation-emission matrix-parallel factor analysis identified the protein-like fraction in soluble microbial products as main endogenous organic matter driving the sulfate reduction process. The resultant sulfide tended to serve as bacterial modulators, augmenting electron transfer processes and mitigating oxidative stress, thereby enhancing sulfur oxidizing bacteria (SOB) activity, rather than extra electron donors. The cooperation between SOB and heterotroph (sulfate reducing bacteria (SRB) and heterotrophic denitrification bacteria (HDB)) were responsible for advanced nitrogen removal, facilitated by multiple metabolic pathways including denitrification, sulfur oxidation, and sulfate reduction. However, SRB and HDB were potential ARGs hosts and assimilatory sulfate reduction pathway positively contributed to ARGs spread. Overall, the sulfate reduction process in sulfur autotrophic denitrification system boosted nitrogen removal process, but also increased the risk of ARGs transmission.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Changchun Yan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Zou X, Yao Y, Gao M, Zhang Y, Guo H, Liu Y. Treatment of high ammonia anaerobically digested molasses wastewater using aerobic granular sludge reactor. BIORESOURCE TECHNOLOGY 2024; 406:131056. [PMID: 38945503 DOI: 10.1016/j.biortech.2024.131056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
This study addressed the treatment of high ammonia, low biodegradable chemical oxygen demand (bCOD) anaerobically digested molasses wastewater, utilizing an aerobic granular sludge (AGS) reactor. The AGS achieved 99 % ammonia removal regardless of the bCOD supplementation. By adding low ammonia (<60 mg/L), high bCOD raw molasses wastewater (before anaerobic digestion) as a carbon source, enhanced nitrogen removal, increasing from 10 % to 97 %, and improved sludge settleability via bio-induced calcite precipitation were observed. Functional genes prediction suggested two potential denitrification pathways, including heterotrophic denitrification by Paracoccus and Thauera, and autotrophic denitrification, specifically sulfide-oxidizing autotrophic denitrification by Thiobacillus. An increase in the relative abundance of microorganisms involved in heterotrophic denitrification was observed with the addition of high bCOD raw molasses wastewater. Consequently, incorporating raw molasses wastewater into the AGS presents a sustainable approach to achieve mixotrophic denitrification, maintain stable granular sludge and ensure stable treatment performance when treating anaerobically digested molasses wastewater.
Collapse
Affiliation(s)
- Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yiduo Yao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mengjiao Gao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada; College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Yihui Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hengbo Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
6
|
Hao X, Shen A, Duan R, Zhang P, Xue L, Zhao X, Wang X, Li X, Yang Y. Fabrication of a porous Urea@MIL-100(Fe)/CI-MCC/SA hydrogel for All-In-One adsorption, removal and fluorescence monitoring of nitrite. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133326. [PMID: 38150765 DOI: 10.1016/j.jhazmat.2023.133326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
In this paper, a novel All-In-One Urea@MIL-100(Fe)/CI-MCC/SA hydrogel platform was generated by microcrystalline cellulose (MCC) functionalized with pH-response probe (CI), MIL-100 (Fe) and sodium alginate (SA), which was as a carrier of urea to adsorb, remove and monitor NO2-. Under acidic condition, the fluorescent hydrogel platform could produce N2, CO2 and H2O through the diazotization and redox reaction between urea and NO2- with a removal efficiency up to 99.8%, and could also character a good adsorption property for NO2- due to the positive charges of protonation (the maximum adsorption capacity was 21.67 mg g-1), and the adsorption kinetics conformed to pseudo-second-order model. By carried out the NO2- removal step in fluorescent hydrogel platform, NO2- could also be detected indirectly by sensing the changes of pH within 15 min. The linear response range was 0-0.005 M, and the detection limit (LOD) was 74 μM. These results demonstrated that this All-In-One Urea@MIL-100(Fe)/CI-MCC/SA hydrogel platform had great potential in environment. This strategy for the removal and monitoring of NO2- could be employed to related applications in water purification and environmental protection. ENVIRONMENTAL IMPLICATION: Nitrite is one of the important indicators of water monitoring, which is harmful to human and environment. The removal and monitoring of nitrite in industrial wastewater and surface water is very important, but there are no studies about it at present. Based on the fact that urea can react with nitrite to produce green products, we synthesized a novel functional hydrogel to achieve adsorption, removal and fluorescence monitoring of nitrite for the first time. Besides, the practicability of the material in environmental water samples was verified through the detection of nitrite in simulated wastewater.
Collapse
Affiliation(s)
- Xiaohui Hao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ao Shen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruochen Duan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Panqing Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lingwei Xue
- School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, Henan Province, China.
| | - Xiuqing Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xuebing Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xue Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yunxu Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
7
|
Gao H, Chen B, Qaisar M, Lou J, Sun Y, Cai J. Machine learning-based model construction and identification of dominant factor for simultaneous sulfide and nitrate removal process. BIORESOURCE TECHNOLOGY 2023; 390:129848. [PMID: 37832854 DOI: 10.1016/j.biortech.2023.129848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Accurate water quality prediction models are essential for the successful implementation of the simultaneous sulfide and nitrate removal process (SSNR). Traditional models, such as regression and analysis of variance, do not provide accurate predictions due to the complexity of microbial metabolic pathways. In contrast, Back Propagation Neural Networks (BPNN) has emerged as superior tool for simulating wastewater treatment processes. In this study, a generalized BPNN model was developed to simulate and predict sulfide removal, nitrate removal, element sulfur production, and nitrogen gas production in SSNR. Remarkable results were obtained, indicating the strong predictive performance of the model and its superiority over traditional mathematical models for accurately predicting the effluent quality. Furthermore, this study also identified the crucial influencing factors for the process optimization and control. By incorporating artificial intelligence into wastewater treatment modeling, the study highlights the potential to significantly enhance the efficiency and effectiveness of meeting water quality standards.
Collapse
Affiliation(s)
- Hong Gao
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Bilong Chen
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Mahmood Qaisar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan; Department of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain
| | - Juqing Lou
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Yue Sun
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Cai
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
8
|
Chen B, Qaisar M, Xiao J, Li W, Li J, Cai J. Combined acute effect of salinity and substrate concentration on simultaneous sulfide and nitrite removal process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|