1
|
Dai B, Zhou J, Wang Z, Yang Y, Wang S, Yang S, Xia S. Utilizing waste-derived carbon source for partial denitrification-anammox process: Wastewater- and sludge-derived organics. ENVIRONMENTAL RESEARCH 2025; 280:121972. [PMID: 40436199 DOI: 10.1016/j.envres.2025.121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/14/2025] [Accepted: 05/25/2025] [Indexed: 06/01/2025]
Abstract
The partial denitrification-anammox (PDA) process is a promising and sustainable technology for nitrogen removal in wastewater treatment. It is well-suited for mainstream nitrogen removal from municipal wastewater, polishing of anammox for ammonia-rich wastewater treatment, and simultaneous treatment of nitrate and ammonia containing wastewater. While the PDA process reduces external carbon source consumption by over 40 %, it still requires additional carbon input. Wastewater treatment systems inherently contain organics in both wastewater and sludge, but these sources are often inaccessible to denitrifiers. Efficient utilization of these organics is essential for advancing energy-efficient wastewater treatment. This review provides a comprehensive overview of recent advances in utilizing organics derived from wastewater and waste-sludge. Key developments in hydrolytic acidification and Fe-C micro-electrolysis are highlighted for enhancing the biodegradability and conversion of refractory organics. Strategies such as extended hydraulic retention time, functional microbial enrichment, enzymatic pretreatment, and microbial co-cultures are also discussed to improve readily biodegradable organics supply and nitrogen removal. This review further explores emerging applications of PDA process that leverage carbon sources from wastewater treatment systems. Future research should prioritize the efficient integration of these organics throughout PDA process and develop cost-effective methods to address by-products like ammonia-nitrogen. Moreover, a practical roadmap is proposed, outlining optimization of fermentation conditions, system integration, stability under real-world conditions, and techno-economic evaluations. This review aims to provide a comprehensive framework to unlock the full-scale application of PDA using waste-derived carbon, advancing toward carbon-neutral and cost-effective wastewater treatment.
Collapse
Affiliation(s)
- Ben Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zuobin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center of Dredging Technology and Equipment, Key Lab of Dredging Technology, CCCC, Shanghai, 200082, China
| | - Yifeng Yang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai, 200092, China
| | - Sen Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shaobo Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
2
|
Zhou L, Zhang X, Al-Dhabi NA, Zhang X, Tang W, Liu W, Wu P. Metabolic evolution and bottleneck insights into simultaneous autotroph-heterotroph anammox system for real municipal wastewater nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175941. [PMID: 39218086 DOI: 10.1016/j.scitotenv.2024.175941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
When biological nitrogen removal (BNR) systems shifted from treating simulated wastewater to real wastewater, a microbial succession occurred, often resulting in a decline in efficacy. Notably, despite their high nitrogen removal efficiency for real wastewater, anammox coupled systems operating without or with minimal carbon sources also exhibited a certain degree of performance reduction. The underlying reasons and metabolic shifts within these systems remained elusive. In this study, the simultaneous autotrophic/heterotrophic anammox system demonstrated remarkable metabolic resilience upon exposure to real municipal wastewater, achieving a nitrogen removal efficiency (NRE) of 82.83 ± 2.29 %. This resilience was attributed to the successful microbial succession and the complementary metabolic functions of heterotrophic microorganisms, which fostered a resilient microbial community. The system's ability to harness multiple electron sources, including NADH oxidation, the TCA cycle, and organics metabolism, allowed it to establish a stable and efficient electron transfer chain, ensuring effective nitrogen removal. Despite the denitrification channel's nitrite supply capability, the analysis of the interspecies correlation network revealed that the synergistic metabolism between AOB and AnAOB was not fully restored, resulting in selective functional bacterial and genetic interactions and the system's PN/A performance declined. Additionally, the enhanced electron affinity of PD increased interconversion of NO3--N and NO2--N, limiting the efficient utilization of electrons and thereby constraining nitrogen removal performance. This study elucidated the metabolic mechanism of nitrogen removal limitations in anammox-based systems treating real municipal wastewater, enhancing our understanding of the metabolic functions and electron transfer within the symbiotic bacterial community.
Collapse
Affiliation(s)
- Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xingxing Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenru Liu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
3
|
Han J, Jia J, Hu X, Sun L, Ulbricht M, Lv L, Ren Z. Effect of magnetic field coupled magnetic biochar on membrane bioreactor efficiency, membrane fouling mitigation and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172549. [PMID: 38643881 DOI: 10.1016/j.scitotenv.2024.172549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The excitation by magnetic field was established to mitigate the membrane fouling of magnetic biochar (MB)-supplemented membrane bioreactor (MBR) in this study. The results showed that the transmembrane pressure (TMP) increase rates decreased by about 8 % after introducing the magnetic field compared with the magnetic biochar-MBR (MB-MBR). Membrane characterization suggested that the flocs in the magnetic field-magnetic biochar-MBR (MF-MB-MBR) formed a highly permeable developed cake layer, and a fluffier and more porous deposited layer on membrane surface, which minimized fouling clogging of the membrane pores. Further mechanistic investigation revealed that the decrease in contact angle of fouled membrane surface in MF-MB-MBR, i.e. an enhanced membrane hydrophilicity, is considered important for forming highly permeable layers. Additionally, the magnetic field was demonstrated to have a positive effect on the improvement of the magneto-biological effect, the enhancement of charge neutralization and adsorption bridging between sludge and magnetic biochar, and the reduction of formation of extracellular polymeric substances (EPSs), which all yielded sludge flocs with a large pore structure conducive to form a fluffy and porous deposited layer in the membrane surface. Furthermore, high-throughput sequencing analysis revealed that the magnetic field also led to a reduction in microbial diversity, and that it promoted the enrichment of specific functional microbial communities (e.g. Bacteroidetes and Firmicutes) playing an important role in mitigating membrane fouling. Taken together, this study of magnetic field-enhanced magnetic biochar for MBR membrane fouling mitigation provides insights important new ideas for more effective and sustainable operation strategies.
Collapse
Affiliation(s)
- Jinlong Han
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jianna Jia
- Tianjin Research Institute for Water Transport Engineering, M.O.T., China
| | - Xiangjia Hu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Wuqing District Environmental Protection Bureau, Tianjin, 301700, China
| | - Li Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Longyi Lv
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
4
|
Cheng H, Qin H, Liang L, Li YY, Liu J. Towards advanced simultaneous nitrogen removal and phosphorus recovery from digestion effluent based on anammox-hydroxyapatite (HAP) process: Focusing on a solution perspective. BIORESOURCE TECHNOLOGY 2023; 381:129117. [PMID: 37141995 DOI: 10.1016/j.biortech.2023.129117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
In this paper, the state-of-the-art information on the anammox-HAP process is summarized. The mechanism of this process is systematically expounded, the enhancement of anammox retention by HAP precipitation and the upgrade of phosphorus recovery by anammox process are clarified. However, this process still faces several challenges, especially how to deal with the ∼ 11% nitrogen residues and to purify the recovered HAP. For the first time, an anaerobic fermentation (AF) combined with partial denitrification (PD) and anammox-HAP (AF-PD-Anammox-HAP) process is proposed to overcome the challenges. By AF of the organic impurities of the anammox-HAP granular sludge, organic acid is produced to be used as carbon source for PD to remove the nitrogen residues. Simultaneously, pH of the solution drops, which promotes the dissolution of some inorganic purities such as CaCO3. In this way, not only the inorganic impurities are removed, but the inorganic carbon is supplied for anammox bacteria.
Collapse
Affiliation(s)
- Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Haojie Qin
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Lei Liang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
5
|
Fan X, He L, Shi S, Huang Y, He X, Zhou Y, Zhou J. The coupling system of magnetite-enhanced thermophilic hydrolysis-acidification and denitrification for refractory organics removal from anaerobic digestate food waste effluent (ADFE). BIORESOURCE TECHNOLOGY 2023; 371:128601. [PMID: 36632852 DOI: 10.1016/j.biortech.2023.128601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The aim of this study was to remove the refractory organics from high-temperature anaerobic digestate food waste effluent by the coupling system of hydrolysis-acidification and denitrification. Iron-based materials (magnetite, zero-valent iron, and iron-carbon) were used to enhance the performance of thermophilic hydrolysis-acidification. Compared with the control group, magnetite had the best strengthening effect, increasing volatile fatty acids concentration and fluorescence intensity of easily biodegradable organics in the effluent by 47.6 % and 108.4 %, respectively. The coupling system of magnetite-enhanced thermophilic hydrolysis-acidification and denitrification achieved a nitrate removal efficiency of 91.2 % (influent NO3--N was 150 mg L-1), and reduced the fluorescence intensity of refractory organics by 33.8 %, compared with influent. Microbiological analysis indicated that magnetite increased the relative abundance of thermophilic hydrolytic acidifying bacteria, and coupling system enriched some genera simultaneously removing nitrate and refractory organics. This study provided fresh information on refractory organics and nitrogen removal of thermophilic wastewater biologically.
Collapse
Affiliation(s)
- Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yangyang Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ying Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
6
|
Ma G, Yu D, Zhang J, Miao Y, Zhao X, Li J, Zhang Y, Dong G, Zhi J. A novel simultaneous partial nitrification, anammox, denitrification and fermentation process: Enhancing nitrogen removal and sludge reduction in a single reactor. BIORESOURCE TECHNOLOGY 2023; 369:128484. [PMID: 36513309 DOI: 10.1016/j.biortech.2022.128484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
This study verified the feasibility of simultaneous partial nitrification, anammox, denitrification and fermentation process under intermittent aeration in a single reactor, and explored the impact of dissolved oxygen (DO) on the synergy between fermentation and nitrogen removal. An advanced nitrogen removal efficiency of 92.8 % and a low observed sludge yield of 0.0268-0.1474 kgMLSS/kgCOD were achieved. In-situ test showed that nitrate and ammonium decreased synchronously in the absence of organic matter, indicating the possibility of simultaneous partial denitrification, anammox and fermentation. Additionally, the abundance of functional genes for acetate production was 66,894 hits, while the key genes relevant to methanogenesis were only 348 hits, which suggested that fermentation might stop at the acid-producing stage and promote partial denitrification-anammox reaction, achieving simultaneous sludge reduction and advanced nitrogen removal performance. When DO increased from 0.1-0.3 to 0.4-0.6 mg/L, the nitrogen removal efficiency was increased (63.9 %→92.8 %) while sludge reduction was negatively affected.
Collapse
Affiliation(s)
- Guocheng Ma
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China
| | - Deshuang Yu
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jianhua Zhang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yuanyuan Miao
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, PR China.
| | - Xinchao Zhao
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiawen Li
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yu Zhang
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guoqing Dong
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiaru Zhi
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|