1
|
Balasundaram G, Gahlot P, Hafyan RH, Tyagi VK, Gadkari S, Sahu A, Barber B, Mutiyar PK, Kazmi AA, Kleiven H. Anaerobic digestion of thermal hydrolysis pretreated sludge: Process performance, metagenomic analysis, techno-economic and life cycle assessment. BIORESOURCE TECHNOLOGY 2025; 428:132470. [PMID: 40174653 DOI: 10.1016/j.biortech.2025.132470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
This study assessed the potential of thermal hydrolysis process (THP) combined with anaerobic digestion (AD) for high solids sewage sludge treatment across various hydraulic retention times (HRTs). Optimal performance was achieved at a 10-day HRT (6 kg VS/m3·day), yielding 408 L CH4/kg VS added and 54 % volatile solids (VS) removal under THP conditions of 160 °C, 30 min, and 6 bar pressure. Microbial analysis revealed predominant acetoclastic and hydrogenotrophic methanogens. Four scenarios were designed and analyzed for environmental and economic performance: Scenario 1 (conventional AD-CHP), Scenario 2 (conventional AD-BioCNG), Scenario 3 (THP AD-BioCNG), and Scenario 4 (THP AD-CHP). The results showed that scenarios with CHP integration achieved better environmental performance by generating sufficient energy to meet demand, with energy consumption as a key factor. Notably, scenario 4 had the lowest global warming potential (GWP) at -0.0185 kg CO2-eq, outperforming conventional AD (Scenario 1) with CHP, which had a GWP of -0.00232 kg CO2-eq. However, profitability analysis showed that Scenario 3 was the most economically viable, with a net present value (NPV) of $4.3 million, an internal rate of return (IRR) of 10.21 %, and a 17-year payback period. Although it had higher capital ($58 million) and operational costs ($12.5 million/year) than Scenario 4 ($45 million and $8.6 million/year), its greater biomethane yield resulted in higher revenue ($20.7 million/year), making it the most profitable option. While Scenario 4 offered the best environmental benefits, Scenario 3 emerged as the most financially sustainable choice. These findings highlight the environmental and economic advantage of utilizing THP-AD process over conventional AD, suggesting that THP-AD optimizes methane production, solids reduction, and environmental impact, making the Bio CNG pathway a sustainable and economically viable option.
Collapse
Affiliation(s)
- Gowtham Balasundaram
- Department of Civil Engineering, Indian Institute of Technology Roorkee, 247667, India
| | - Pallavi Gahlot
- Department of Civil Engineering, Indian Institute of Technology Roorkee, 247667, India
| | - Rendra Hakim Hafyan
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee 247667, India.
| | - Siddharth Gadkari
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Ashish Sahu
- Cambi AS, Skysstasjon 11A, 1383 Asker, Norway
| | - Bill Barber
- Cambi AS, Skysstasjon 11A, 1383 Asker, Norway
| | - Pravin K Mutiyar
- National Mission for Clean Ganga, Department of Water Resources, Ministry of Jal Shakti, Govt. of India, New Delhi, India
| | - A A Kazmi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, 247667, India
| | | |
Collapse
|
2
|
Guo C, Ma Y, Li Y, Wang Z, Lin S, Dong R, Liu S. Effects of Hydrothermal Pretreatment and Anaerobic Digestion of Pig Manure on the Antibiotic Removal and Methane Production. Appl Biochem Biotechnol 2024; 196:7104-7127. [PMID: 38483763 DOI: 10.1007/s12010-024-04900-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 11/21/2024]
Abstract
Whether advanced biological waste treatment technologies, such as hydrothermal pretreatment (HTP) integrated anaerobic digestion (AD), could enhance the removal of different antibiotics remains unclear. This study investigated the outcome of antibiotics and methane productivity during pig manure treatment via HTP, AD, and HTP + AD. Results showed improved removal efficiency of sulfadiazine (SDZ), oxytetracycline (OTC), and enrofloxacin (ENR) with increased HTP temperatures (70, 90, 120, 150, and 170 °C). OTC achieved the highest removal efficiency of 86.8% at 170 °C because of its high sensitivity to heat treatment. For AD, SDZ exhibited resistance with a removal efficiency of 52.8%. However, OTC and ENR could be removed completely within 30 days. When HTP was used prior to AD, OTC and ENR could achieve complete removal. However, residual SDZ levels reduced to 20% and 16% at 150 and 170 °C, respectively. The methanogenic potential showed an overall upward trend as the HTP temperature increased. Microbial analysis revealed the antibiotics-induced enrichment of specific microorganisms during AD. Firmicutes were the dominant bacterial phylum, with their abundance positively correlated with the addition of antibiotics. Methanobacterium and Methanosarcina emerged as the dominant archaea that drove methane production during AD. Thus, HTP can be a potential pretreatment before AD to reduce antibiotic-related risks in manure waste handling.
Collapse
Affiliation(s)
- Chunchun Guo
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yanfang Ma
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yitao Li
- Department of Civil and Environmental Engineering, Virginia Tech, Arlington, VA, 22202, USA
| | - Zhiwu Wang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shupeng Lin
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Shan Liu
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
- Yantai Research Institute, China Agricultural University, Yantai, 264670, People's Republic of China.
| |
Collapse
|
3
|
Pratap V, Kumar S, Yadav BR. Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:696-720. [PMID: 39141030 DOI: 10.2166/wst.2024.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Sewage sludge (SS) is a potential source of bioenergy, yet its management is a global concern. Anaerobic digestion (AD) is applied to effectively valorize SS by reclaiming energy in the form of methane. However, the complex floc structure of SS hinders hydrolysis during AD process, thus resulting in lower process efficiency. To overcome the rate-limiting hydrolysis, various pre-treatment methods have been developed to enhance AD efficiency. This review aims to provide insights into recent advancements in pre-treatment technologies, including mechanical, chemical, thermal, and biological methods. Each technology was critically evaluated and compared, and its relative worth was summarized based on full-scale applicability, along with economic benefits, AD performance improvements, and impact on digested sludge. The paper illuminates the readers about existing research gaps, and the future research needed for successful implementation of these approaches at full scale.
Collapse
Affiliation(s)
- Vinay Pratap
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Bholu Ram Yadav
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India E-mail:
| |
Collapse
|
4
|
Vidyarthi PK, Arora P, Blond N, Ponche JL. Modelling and techno-economic assessment of possible pathways from sewage sludge to green energy in India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121856. [PMID: 39032256 DOI: 10.1016/j.jenvman.2024.121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Efficient domestic wastewater management is essential for mitigating the impact of wastewater on human health and the environment. Wastewater management with conventional technologies generates sewage sludge. The present study considered a modelling approach to evaluate various processing pathways to produce energy from the sewage sludge. Anaerobic digestion, gasification, pyrolysis, and hydrothermal liquefaction are analysed in terms of their energy generation potentials with the Aspen Plus software. A techno-economic assessment is performed to assess the economic viability of each pathway. It reveals that gasification appears as the most promising method to produce electricity, with 0.76 kWh/kgdrysludge, followed by anaerobic digestion (0.53 kWh/kgdrysludge), pyrolysis (0.34 kWh/kgdrysludge), and hydrothermal liquefaction (0.13 kWh/kgdrysludge). In contrast, the techno-economic analysis underscores the viability of anaerobic digestion with levelized cost of electricity as 0.02 $/kWh followed by gasification (0.11 $/kWh), pyrolysis (0.14 $/kWh), and hydrothermal liquefaction (2.21 $/kWh). At the same time, if the products or electricity from the processing unit is sold, equivalent results prevail. The present study is a comprehensive assessment of sludge management for researchers and policymakers. The result of the study can also assist policymakers and industry stakeholders in deciding on alternative options for energy recovery and revenue generation from sewage sludge.
Collapse
Affiliation(s)
- Praveen Kumar Vidyarthi
- Hydro and Renewable Energy Department, Indian Institute of Technology-Roorkee, Roorkee, India; University of Strasbourg, CNRS, ENGEES, Laboratoire Image, Ville, Environnement (LIVE UMR7362), Strasbourg, France.
| | - Pratham Arora
- Hydro and Renewable Energy Department, Indian Institute of Technology-Roorkee, Roorkee, India.
| | - Nadège Blond
- University of Strasbourg, CNRS, ENGEES, Laboratoire Image, Ville, Environnement (LIVE UMR7362), Strasbourg, France.
| | - Jean-Luc Ponche
- University of Strasbourg, CNRS, ENGEES, Laboratoire Image, Ville, Environnement (LIVE UMR7362), Strasbourg, France.
| |
Collapse
|
5
|
Yu MY, Sun JP, Li SF, Sun J, Liu XM, Wang AQ. Effect of microwaves combined with peracetic acid to improve the dewatering performance of residual sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44885-44899. [PMID: 38954344 DOI: 10.1007/s11356-024-33931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
The activated sludge process plays a crucial role in modern wastewater treatment plants. During the treatment of daily sewage, a large amount of residual sludge is generated, which, if improperly managed, can pose burdens on the environment and human health. Additionally, the highly hydrated colloidal structure of biopolymers limits the rate and degree of dewatering, making mechanical dewatering challenging. This study investigates the impact and mechanism of microwave irradiation (MW) in conjunction with peracetic acid (PAA) on the dewatering efficiency of sludge. Sludge dewatering effectiveness was assessed through capillary suction time (CST) and specific resistance to filtration (SRF). Examination of the impact of MW-PAA treatment on sludge dewatering performance involved assessing the levels of extracellular polymeric substances (EPS), employing three-dimensional excitation-emission matrix (3D-EEM), Fourier transform-infrared spectroscopy (FT-IR), and scanning electron microscopy. Findings reveal that optimal dewatering performance, with respective reductions of 91.22% for SRF and 84.22% for CST, was attained under the following conditions: microwave power of 600 W, reaction time of 120 s, and PAA dosage of 0.25 g/g MLSS. Additionally, alterations in both sludge EPS composition and floc morphology pre- and post-MW-PAA treatment underwent examination. The findings demonstrate that microwaves additionally boost the breakdown of PAA into •OH radicals, suggesting a synergistic effect upon combining MW-PAA treatment. These pertinent research findings offer insights into employing MW-PAA technology for residual sludge treatment.
Collapse
Affiliation(s)
- Ming-Yuan Yu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Jian-Ping Sun
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Shao-Feng Li
- Shenzhen Polytechnic University, Shenzhen, 518055, China.
| | - Jian Sun
- Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Xiao-Ming Liu
- Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Ao-Qian Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| |
Collapse
|
6
|
Sun Z, Song X, Wu Y, Jie J, Zhang Z. Synergistic effects of peracetic acid and free ammonia pretreatment on anaerobic fermentation of waste activated sludge to promote short-chain fatty acid production for polyhydroxyalkanoate biosynthesis: Mechanisms and optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121078. [PMID: 38723503 DOI: 10.1016/j.jenvman.2024.121078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Peracetic acid (PAA) combined with free ammonia (FA) pretreatment can be utilized to promote anaerobic fermentation (AF) of waste activated sludge (WAS) to produce short-chain fatty acids (SCFAs), and the resulting SCFAs are desirable carbon sources (C-sources) for polyhydroxyalkanoate (PHA) biosynthesis. This work aimed to determine the optimum conditions for PAA + FA pretreatment of sludge AF and the feasibility of using anaerobic fermentation liquor (AFL) for PHA production. To reveal the mechanisms of integrated pretreatment, the impacts of PAA + FA pretreatment on different stages of sludge AF and changes in the microbial community structure were explored. The experimental results showed that the maximum SCFA yield reached 491.35 ± 6.02 mg COD/g VSS on day 5 after pretreatment with 0.1 g PAA/g VSS +70 mg FA/L, which was significantly greater than that resulting from PAA or FA pretreatment alone. The mechanism analysis showed that PAA + FA pretreatment promoted sludge solubilization but strongly inhibited methanogenesis. According to the analysis of the microbial community, PAA + FA pretreatment changed the microbial community structure and promoted the enrichment of bacteria related to hydrolysis and acidification, and Proteiniclasticum, Macellibacteroides and Petrimonas became the dominant hydrolytic and acidifying bacteria. Finally, after alkali treatment, the AFL was utilized for batch-mode PHA production, and a maximum PHA yield of 55.05 wt% was achieved after five operation periods.
Collapse
Affiliation(s)
- Zhaoxia Sun
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Xiulan Song
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Yuqi Wu
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China.
| | - Jifa Jie
- Wuhan Planning and Design Institute, Wuhan, 430010, PR China
| | - Zeqian Zhang
- Shanxi Transportation New Technology Development Co.,Ltd., Taiyuan, 030006, PR China
| |
Collapse
|
7
|
Zhou P, Li D, Zhang C, Ping Q, Wang L, Li Y. Comparison of different sewage sludge pretreatment technologies for improving sludge solubilization and anaerobic digestion efficiency: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171175. [PMID: 38402967 DOI: 10.1016/j.scitotenv.2024.171175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Anaerobic digestion (AD) of sewage sludge reduces organic solids and produces methane, but the complex nature of sludge, especially the difficulty in solubilization, limits AD efficiency. Pretreatments, by destroying sludge structure and promoting disintegration and hydrolysis, are valuable strategies to enhance AD performance. There is a plethora of reviews on sludge pretreatments, however, quantitative comparisons from multiple perspectives across different pretreatments remain scarce. This review categorized various pretreatments into three groups: Physical (ultrasonic, microwave, thermal hydrolysis, electric decomposition, and high pressure homogenization), chemical (acid, alkali, Fenton, calcium peroxide, and ozone), and biological (microaeration, exogenous bacteria, and exogenous hydrolase) pretreatments. The optimal conditions of various pretreatments and their impacts on enhancing AD efficiency were summarized; the effects of different pretreatments on microbial community in the AD system were comprehensively compared. The quantitative comparison based on dissolution degree of COD (DDCOD) indicted that the sludge solubilization performance is in the order of physical, chemical, and biological pretreatments, although with each below 40 % DDCOD. Biological pretreatment, particularly microaeration and exogenous bacteria, excel in AD enhancement. Pretreatments alter microbial ecology, favoring Firmicutes and Methanosaeta (acetotrophic methanogens) over Proteobacteria and Methanobacterium (hydrogenotrophic methanogens). Most pretreatments have unfavorable energy and economic outcomes, with electric decomposition and microaeration being exceptions. On the basis of the overview of the above pretreatments, a full energy and economy assessment for sewage sludge treatment was suggested. Finally, challenges associated with sludge pretreatments and AD were analyzed, and future research directions were proposed. This review may broaden comprehension of sludge pretreatments and AD, and provide an objective basis for the selection of sludge pretreatment technologies.
Collapse
Affiliation(s)
- Pan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Dunjie Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
8
|
Ma M, Duan W, Huang X, Zeng D, Hu L, Gui W, Zhu G, Jiang J. Application of calcium peroxide in promoting resource recovery from municipal sludge: A review. CHEMOSPHERE 2024; 354:141704. [PMID: 38490612 DOI: 10.1016/j.chemosphere.2024.141704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The harmless disposal, resource recovery, and synergistic efficiency reduction of municipal sludge have been the research focuses for the last few years. Calcium peroxide (CaO2) is a multifunctional and safe peroxide that produces an alkaline oxidation environment to promote the fermentation of municipal sludge to produce hydrogen (H2) and volatile fatty acids (VFAs), thus realizing sludge resource recovery. This review outlines the research achievements of CaO2 in sludge resource recovery, improvement of sludge dewaterability, and removal of pollutants from sludge in recent years. Meanwhile, the mechanism of CaO2 and its influencing factors have also been comprehensively summarized. Finally, the future development direction of the application of CaO2 in municipal sludge is prospected. This review would provide theoretical reference for the potential engineering applications of CaO2 in improving sludge treatment in the future.
Collapse
Affiliation(s)
- Mengsha Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Weiyan Duan
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Daojing Zeng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Liangshan Hu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wenjing Gui
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Gaoming Zhu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jiahong Jiang
- New York University, New York, NY, 10012, United States
| |
Collapse
|
9
|
Li Y, Campos LC, Hu Y. Microwave pretreatment of wastewater sludge technology-a scientometric-based review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26432-26451. [PMID: 38532216 PMCID: PMC11052793 DOI: 10.1007/s11356-024-32931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
This manuscript presents a scientometric review of recent advances in microwave pretreatment processes for sewage sludge, systematically identifying existing gaps and prospects. For this purpose, 1763 papers on the application of microwave technology to sludge pretreatment were retrieved from the Web of Science (WoS) using relevant keywords. These publications were then analyzed using diverse scientometric indices. The results show that research in this field encompasses applications based on the non-thermal effects of microwaves, enhanced effectiveness of anaerobic digestion (AD), and the energy balance of this pretreatment system. Overcoming existing technical challenges, such as the cleavage of extracellular polymers, reducing microwave energy consumption, understanding the non-thermal effects of microwaves, promoting AD of sludge in combination with other chemical and physical methods, and expanding the application of the technology, are the main scientific focuses. Additionally, this paper thoroughly examines both the constraints and potential of microwave pretreatment technology for wastewater treatment.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Civil, Environmental & Geomatic Engineering, University College London, London, WC1E 6BT, UK
| | - Luiza C Campos
- Department of Civil, Environmental & Geomatic Engineering, University College London, London, WC1E 6BT, UK
| | - Yukun Hu
- Department of Civil, Environmental & Geomatic Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
10
|
Wang X, Dürr V, Guenne A, Mazéas L, Chapleur O. Generic role of zeolite in enhancing anaerobic digestion and mitigating diverse inhibitions: Insights from degradation performance and microbial characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120676. [PMID: 38520850 DOI: 10.1016/j.jenvman.2024.120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Zeolite was shown to mitigate anaerobic digestion (AD) inhibition caused by several inhibitors such as long-chain fatty acids, ammonia, and phenolic compounds. In this paper, we verified the genericity of zeolite's mitigating effect against other types of inhibitors found in AD such as salts, antibiotics, and pesticides. The impacts of inhibitors and zeolite were assessed on AD performance and microbial dynamics. While sodium chloride and erythromycin reduced methane production rates by 34% and 32%, zeolite mitigated the inhibition and increased methane production rates by 72% and 75%, respectively, compared to conditions without zeolite in the presence of these two inhibitors. Noticeably, zeolite also enhanced methane production rate by 51% in the uninhibited control condition. Microbial community structure was analyzed at two representative dates corresponding to the hydrolysis/fermentation and methanogenesis stages through 16S rRNA gene sequencing. The microbial characteristics were further evidenced with common components analysis. Results revealed that sodium chloride and erythromycin inhibited AD by targeting distinct microbial populations, with more pronounced inhibitory effects during hydrolysis and VFAs degradation phases, respectively. Zeolite exhibited a generic effect on microbial populations in different degradation stages across all experimental conditions, ultimately contributing to the enhanced AD performance and mitigation of different inhibitions. Typically, hydrolytic and fermentative bacteria such as Cellulosilyticum, Sedimentibacter, and Clostridium sensu stricto 17, VFAs degraders such as Mesotoga, Syntrophomonas, and Syntrophobacter, and methanogens including Methanobacterium, Methanoculleus, and Methanosarcina were strongly favored by the presence of zeolite. These findings highlighted the promising use of zeolite in AD processes for inhibition mitigation in general.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Vincent Dürr
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Angéline Guenne
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Laurent Mazéas
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Olivier Chapleur
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France.
| |
Collapse
|
11
|
Qiao LL, Guo JS, Fang F, Chen YP, Yan P. The recovery potential and utilization pathway of chemical energy from wastewater pollutants during wastewater treatment in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120591. [PMID: 38490008 DOI: 10.1016/j.jenvman.2024.120591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Research on the potential for chemical energy recovery and the optimization of recovery pathways in different regions of China is still lacking. This study aimed to address this gap by evaluating the potential and optimize the utilization pathways for chemical energy recovery in various regions of China for achieving sustainable wastewater treatment. The results showed that the eastern and northeastern regions of China exhibited higher chemical energy levels under the existing operating conditions. Key factors affecting chemical energy recovery included chemical oxygen demand removal (ΔCOD), treatment scale, and specific energy consumption (μ) of wastewater treatment plants (WWTPs). Furthermore, the average improvement in the chemical energy recovery rate with an optimized utilization pathway was approximately 40% in the WWTPs. The use of the net-zero energy consumption (NZE) model proved effective in improving the chemical energy recovery potential, with an average reduction of greenhouse gas (GHG) emissions reaching next to 95% in the investigated WWTPs.
Collapse
Affiliation(s)
- Li-Li Qiao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
12
|
Francesca D, Elisa R, Alessandro DF, Emilio M, Tonia T, Debora F. Modelling of technical, environmental, and economic evaluations of the effect of the organic loading rate in semi-continuous anaerobic digestion of pre-treated organic fraction municipal solid waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123417. [PMID: 38253163 DOI: 10.1016/j.envpol.2024.123417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
The study concerned technical feasibility, economic profitability, and carbon footprint (CF) analysis of semi-continuous anaerobic digestion (sAD) of organic fraction of municipal solid waste (OFMSW). The research assessed the pre-treatment effect on sAD by varying organic loading rates (OLR) from 3.38 to 6.75 kgvs/m3d. Three sAD configurations were investigated: hydrodynamic-cavitated (HC-OFMSW), enzymatically pre-treated (EN-OFMSW), and non-pre-treated (AD-OFMSW). Principal Component Analysis and Supervised Kohonen's Self-Organizing Maps combined the experimental, economic, and environmental evaluations. The sAD configurations were grouped predominantly according to the OLR however, within each OLR group the configurations were clustered according to the pre-treatments. The finding highlighted that pre-treatments offset inhibition in sAD of OFMSW due to the OLR increase, being economically profitable and CF negative up to 4.50 kgvs/m3d for EN-OFMSW and to 5.40 kgvs/m3d for HC-OFMSW. Whereas sAD-OFMSW remained economically and environmentally viable only up to 3.87 kgvs/m3d. HC-OFMSW reached the highest performance. In detail, for HC-OFMSW the NPV and CF ranged from 17679.30 to 43827.12 euros and from -51.08 to -407.210 kg CO2eq/1 MWh daily produced, by decreasing the OLR from 5.40 to 3.87 kgvs/m3d. These results are fundamental since pre-treatment is usually expensive due to additional energy or chemical requirements.
Collapse
Affiliation(s)
- Demichelis Francesca
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy.
| | - Robotti Elisa
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121, Alessandria, Italy
| | - Deorsola Fabio Alessandro
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Marengo Emilio
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121, Alessandria, Italy
| | - Tommasi Tonia
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Fino Debora
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
13
|
Song G, Zhao S, Wang J, Zhao K, Zhao J, Liang H, Liu R, Li YY, Hu C, Qu J. Enzyme-enhanced acidogenic fermentation of waste activated sludge: Insights from sludge structure, interfaces, and functional microflora. WATER RESEARCH 2024; 249:120889. [PMID: 38043351 DOI: 10.1016/j.watres.2023.120889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Anaerobic fermentation is widely installed to recovery valuable resources and energy as CH4 from waste activated sludge (WAS), and its implementation in developing countries is largely restricted by the slow hydrolysis, poor efficiency, and complicate inert components therein. In this study, enzyme-enhanced fermentation was conducted to improve sludge solubilization from 283 to 7728 mg COD/L and to enhance volatile fatty acids (VFAs) yield by 58.6 % as compared to the conventional fermentation. The rapid release of organic carbon species, especially for tryptophan- and tyrosine-like compounds, to outer layer of extracellular polymeric substance (EPS) occurred to reduce the structural complexity and improve the sludge biodegradability towards VFAs production. Besides, upon enzymatic pretreatment the simultaneous exposure of hydrophilic and hydrophobic groups on sludge surfaces increased the interfacial hydrophilicity. By quantitative analysis via interfacial thermodynamics and XDLVO theory, it was confirmed that the stronger hydrophilic repulsion and energy barriers in particle interface enhanced interfacial mass transfer and reactions involved in acidogenic fermentation. Meanwhile, these effects stimulate the fermentation functional microflora and predominant microorganism, and the enrichment of the hydrolytic and acid-producing bacteria in metaphase and the proliferation of acetogenic bacteria, e.g., Rubrivivax (+9.4 %), in anaphase also benefits VFAs formation. This study is practically valuable to recovery valuable VFAs as carbon sources and platform chemicals from WAS and agriculture wastes.
Collapse
Affiliation(s)
- Ge Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaqi Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - He Liang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Gao P, Ming X, Wang X, Chen Z, Liu Y, Li X, Zhang D. Effects of ozone on activated sludge: performance of anaerobic digestion and structure of the microbial community. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2826-2836. [PMID: 38096071 PMCID: wst_2023_378 DOI: 10.2166/wst.2023.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The treatment and disposal of activated sludge are currently challenging tasks in the world. As a common biological engineering technology, biological fermentation exists with disadvantages such as low efficiency and complex process. Ozone pretreatments are commonly applied to improve this problem due to their high efficiency and low cost. In this study, the significant function of ozone in anaerobic fermentation gas production was verified with excess sludge. Compared with other untreated sludge, ozone pretreatment can effectively degrade activated sludge. After ozone treatment and mixing with primary sludge, the methane production of excess sludge increased by 49.30 and 50.78%, and the methanogenic activity increased by 69.99 and 73.83%, respectively. The results indicated that the mixing of primary sludge with excess sludge possessed synergistic effects, which contributed to the anaerobic fermentation of excess sludge. The results of microbial community structure exhibited that methanogenic processes mainly involve hydrogenogens, acidogens and methanogens. The relative abundance of both bacteria and microorganisms changed significantly in the early stage of hydraulic retention time, which coincided exactly with the gas production stage. This study provided a feasible pretreatment strategy to improve sludge biodegradability and revealed the role of microorganisms during anaerobic digestion.
Collapse
Affiliation(s)
- Pei Gao
- P.G. and X.M. contributed equally to this work. E-mail:
| | - Xujia Ming
- P.G. and X.M. contributed equally to this work
| | | | | | | | | | | |
Collapse
|
15
|
Zhang M, Yang Y, Mou H, Pan A, Su X, Chen J, Lin H, Sun F. Enhanced methane yield in anaerobic digestion of waste activated sludge by combined pretreatment with fungal mash and free nitrous acid. BIORESOURCE TECHNOLOGY 2023; 385:129441. [PMID: 37399961 DOI: 10.1016/j.biortech.2023.129441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This study explores a novel approach for enhancing anaerobic digestion of waste activated sludge (WAS) through the combined pretreatment of fungal mash and free nitrous acid (FNA). Aspergillus PAD-2, a fungal strain with superior hydrolase secretion, was isolated from WAS and cultivated in-situ on food waste to produce fungal mash. The solubilization of WAS by fungal mash achieved a high soluble chemical oxygen demand release rate of 548 mg L-1 h-1 within first 3 h. The combined pretreatment of fungal mash and FNA further improved the sludge solubilization by 2-fold and resulted in a doubled methane production rate of 416±11 mL CH4 g-1 volatile solids. The Gompertz model analysis revealed a higher maximum specific methane production rate and shortened lag time by the combined pretreatment. These results demonstrate that the combined fungal mash and FNA pretreatment offers a promising alternative for fast anaerobic digestion of WAS.
Collapse
Affiliation(s)
- Min Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yuwei Yang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Huaqian Mou
- Jinhua Water Treatment Co. Ltd., Jinhua 321017, China
| | - Aodong Pan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, Zhejiang 310007, China.
| |
Collapse
|
16
|
Wang Y, Yang X, Li H, Zhu L, Wang H. Steel slag assists potassium ferrate to improve SCFAs production from anaerobic sludge fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117996. [PMID: 37087889 DOI: 10.1016/j.jenvman.2023.117996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Potassium ferrate (PF) pretreatment in anaerobic sludge and its potential influence mechanisms have received widely attention. This study investigated the coupling effect of PF loading on steel slag (SS) on excess sludge anaerobic fermentation. Results showed that SS loading increase the treatment performance of PF on short chain volatile fatty acids (SCFAs) production from anaerobic fermented sludge. It was showed that the modified PF loaded SS (MPF-SS) promoted the dissolution and release of organic substrates from intracellular to extracellular. Further exploration showed the promotion of PF and MPF-SS exposure to acid production microorganisms was much more than that to acid consumption microorganisms. MPF-SS addition can also effectively reinforce the carbohydrate transport, amino acid metabolism and the key enhanced genes associated with fatty acid biosynthesis pathways. This study fills the knowledge gap about modified PF on sludge treatment and also expands a new perspective for its application for sludge resource recovery.
Collapse
Affiliation(s)
- Yali Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, Baoding, 071002, China; School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China; School of Life Science, Hebei University, Baoding, 071002, China
| | - Xianglong Yang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, Baoding, 071002, China; School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Hang Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, Baoding, 071002, China; School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Lei Zhu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, Baoding, 071002, China; School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, Baoding, 071002, China; School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China; School of Life Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
17
|
Kazimierowicz J, Dębowski M, Zieliński M. Technological, Ecological, and Energy-Economic Aspects of Using Solidified Carbon Dioxide for Aerobic Granular Sludge Pre-Treatment Prior to Anaerobic Digestion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4234. [PMID: 36901245 PMCID: PMC10002249 DOI: 10.3390/ijerph20054234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The technology of aerobic granular sludge (AGS) seems prospective in wastewater bio-treatment. The characteristics as well as compactness and structure of AGS have been proved to significantly affect the effectiveness of thus far deployed methods for sewage sludge processing, including anaerobic digestion (AD). Therefore, it is deemed necessary to extend knowledge on the possibilities of efficient AGS management and to seek viable technological solutions for methane fermentation of sludge of this type, including by means of using the pre-treatment step. Little is known about the pre-treatment method with solidified carbon dioxide (SCO2), which can be recovered in processes of biogas upgrading and enrichment, leading to biomethane production. This study aimed to determine the impact of AGS pre-treatment with SCO2 on the efficiency of its AD. An energy balance and a simplified economic analysis of the process were also carried out. It was found that an increasing dose of SCO2 applied in the pre-treatment increased the concentrations of COD, N-NH4+, and P-PO43- in the supernatant in the range of the SCO2/AGS volume ratios from 0.0 to 0.3. No statistically significant differences were noted above the latter value. The highest unit yields of biogas and methane production, reaching 476 ± 20 cm3/gVS and 341 ± 13 cm3/gVS, respectively, were obtained in the variant with the SCO2/AGS ratio of 0.3. This experimental variant also produced the highest positive net energy gain, reaching 1047.85 ± 20 kWh/ton total solids (TS). The use of the higher than 0.3 SCO2 doses was proved to significantly reduce the pH of AGS (below 6.5), thereby directly diminishing the percentage of methanogenic bacteria in the anaerobic bacterial community, which in turn contributed to a reduced CH4 fraction in the biogas.
Collapse
Affiliation(s)
- Joanna Kazimierowicz
- Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Marcin Dębowski
- Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | - Marcin Zieliński
- Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| |
Collapse
|
18
|
Sarbanha AA, Larachi F, Taghavi SM, Thiboutot-Rioux M, Boudreau A, Dugas G. Mitigation of Ship Emissions: Overview of Recent Trends. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ali-Akbar Sarbanha
- Department of Chemical Engineering, Université Laval, 1065 Avenue de la Médecine, Québec, QuébecG1 V 0A6, Canada
| | - Faïçal Larachi
- Department of Chemical Engineering, Université Laval, 1065 Avenue de la Médecine, Québec, QuébecG1 V 0A6, Canada
| | - Seyed-Mohammad Taghavi
- Department of Chemical Engineering, Université Laval, 1065 Avenue de la Médecine, Québec, QuébecG1 V 0A6, Canada
| | - Mareen Thiboutot-Rioux
- Innovation Maritime−Institut Maritime du Québec, 53, Rue Saint-Germain Ouest, Rimouski, QuébecG5L 4B4, Canada
| | - Alexandre Boudreau
- Innovation Maritime−Institut Maritime du Québec, 53, Rue Saint-Germain Ouest, Rimouski, QuébecG5L 4B4, Canada
| | - Gabriel Dugas
- Innovation Maritime−Institut Maritime du Québec, 53, Rue Saint-Germain Ouest, Rimouski, QuébecG5L 4B4, Canada
| |
Collapse
|
19
|
Pretreatment in Vortex Layer Apparatus Boosts Dark Fermentative Hydrogen Production from Cheese Whey. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dark fermentation (DF) is a promising process for mitigating environmental pollution and producing “green” H2. However, wider implementation and scaling of this technology is hampered by insufficient process efficiency. In this work, for the first time, the effect of innovative pretreatment of cheese whey (CW) in a vortex layer apparatus (VLA) on characteristics and DF of CW was studied. Pretreatment in VLA resulted in a heating of the CW, slight increase in pH, volatile fatty acids, iron, and reduction in fat, sugar, and chemical oxygen demand (COD). The biochemical hydrogen potential test and analysis of H2 production kinetics confirmed the significant potential of using VLA in enhancement of dark fermentative H2 production. The maximum potential H2 yield (202.4 mL H2/g COD or 3.4 mol H2/mol hexose) was obtained after pretreatment in VLA for 45 s and was 45.8% higher than the control. The maximum H2 production rate after 5 and 45 s of pretreatment was 256.5 and 237.2 mL H2/g COD/d, respectively, which is 8.06 and 7.46 times higher than in the control. The lag phase was more than halved as a function of the pretreatment time. The pretreatment time positively correlated with the total final concentration of Fe2+ and Fe3+ and negatively with the lag phase, indicating a positive effect of pretreatment in VLA on the start of H2 production.
Collapse
|
20
|
Wu Q, Zou D, Zheng X, Liu F, Li L, Xiao Z. Effects of antibiotics on anaerobic digestion of sewage sludge: Performance of anaerobic digestion and structure of the microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157384. [PMID: 35843318 DOI: 10.1016/j.scitotenv.2022.157384] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
As a common biological engineering technology, anaerobic digestion can stabilize sewage sludge and convert the carbon compounds into renewable energy (i.e., methane). However, anaerobic digestion of sewage sludge is severely affected by antibiotics. This review summarizes the effects of different antibiotics on anaerobic digestion of sewage sludge, including production of methane and volatile fatty acids (VFAs), and discusses the impact of antibiotics on biotransformation processes (solubilization, hydrolysis, acidification, acetogenesis and methanogenesis). Moreover, the effects of different antibiotics on microbial community structure (bacteria and archaea) were determined. Most of the research results showed that antibiotics at environmentally relevant concentrations can reduce biogas production mainly by inhibiting methanogenic processes, that is, methanogenic archaea activity, while a few antibiotics can improve biogas production. Moreover, the combination of multiple environmental concentrations of antibiotics inhibited the efficiency of methane production from sludge anaerobic digestion. In addition, some lab-scale pretreatment methods (e.g., ozone, ultrasonic combined ozone, zero-valent iron, Fe3+ and magnetite) can promote the performance of anaerobic digestion of sewage sludge inhibited by antibiotics.
Collapse
Affiliation(s)
- Qingdan Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China
| | - Xiaochen Zheng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China
| | - Fen Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Longcheng Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China.
| |
Collapse
|
21
|
Zhang C, Yang X, Tan X, Wan C, Liu X. Sewage sludge treatment technology under the requirement of carbon neutrality: Recent progress and perspectives. BIORESOURCE TECHNOLOGY 2022; 362:127853. [PMID: 36037839 DOI: 10.1016/j.biortech.2022.127853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In the context of climate policies that advocate carbon neutrality, carbon emission reduction provides a new restriction in evaluating the waste activated sludge (WAS) treatment technologies and procedures. This review provides an overview of current researches and development efforts in WAS treatment, focusing on the dual attributes of WAS as contaminants and resources. Firstly, the improved technical requirements posed by heavy metals, micro(nano) plastics, or other emerging plastics in WAS are studied. Furthermore, in terms of carbon emission reduction, the applications and limitations of widely deployed WAS treatment technologies are discussed. Based on carbon neutrality requirements, the anaerobic co-digestion and co-pyrolysis technologies are comprehensively discussed from the views of pollutants removing efficiencies, enhancement methods, carbon emissions, and resource recovery. Finally, a workable new route for WAS treatment is proposed for future technological advancement and engineering innovation.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., Shanghai 200092, China
| | - Xue Yang
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., Shanghai 200092, China
| | - Xuejun Tan
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., Shanghai 200092, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
22
|
Liu X, Wang D, Chen Z, Wei W, Mannina G, Ni BJ. Advances in pretreatment strategies to enhance the biodegradability of waste activated sludge for the conversion of refractory substances. BIORESOURCE TECHNOLOGY 2022; 362:127804. [PMID: 36007767 DOI: 10.1016/j.biortech.2022.127804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) is a low-cost technology widely used to divert waste activated sludge (WAS) to renewable energy production, but is generally restricted by its poor biodegradability which mainly caused by the endogenous and exogenous refractory substances present in WAS. Several conventional methods such as thermal-, chemical-, and mechanical-based pretreatment have been demonstrated to be effective on organics release, but their functions on refractory substances conversion are overlooked. This paper firstly reviewed the presence and role of endogenous and exogenous refractory substances in anaerobic biodegradability of WAS, especially on their inhibition mechanisms. Then, the pretreatment strategies developed for enhancing WAS biodegradability by facilitating refractory substances conversion were comprehensively reviewed, with the conversion pathways and underlying mechanisms being emphasized. Finally, the future research needs were directed, which are supposed to improve the circular bioeconomy of WAS management from the point of removing the hindering barrier of refractory substances on WAS biodegradability.
Collapse
Affiliation(s)
- Xuran Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Giorgio Mannina
- Engineering Department - Palermo University, Ed. 8 Viale delle Scienze, 90128 Palermo, Italy
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|