1
|
Yang Q, Jin W, Fang H, Chen W, Xie Q, Chen H, Liu Q, Jiang X, Wang S, Zhang L, Zhang Y, Hong Z. Ferritin-tagged ulva polysaccharide lyase for efficient degradation of biomass polysaccharides into reducing sugars. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03177-7. [PMID: 40434690 DOI: 10.1007/s00449-025-03177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025]
Abstract
Enhancing the stability and the reusability of ulva polysaccharide lyase (UPL) is crucial for the efficient production of reducing sugars from ulva polysaccharides, which are vital for their broad applications in functional foods. In this study, we innovatively developed a self-immobilized UPL by fusing the enzyme with ferritin, leading to the spontaneous formation of micron-sized ulva polysaccharide lyase supraparticles (mUPLSPs). This novel system streamlines the enzyme purification and immobilization process into a single step, effectively circumventing the need for conventional, laborious chromatographic methods. The mUPLSPs exhibited superior stability and reusability, maintaining over 80% of their initial activity after five cycles of use. When compared to free UPLs, mUPLSPs displayed enhanced thermal and pH stability, resulting in a 252% increase in the yield of reducing sugars after a 40-hour reaction period. The ferritin-tagged, self-immobilization strategy not only provides a scalable and cost-efficient approach to the sustainable production of reducing sugars from ulva polysaccharides but also holds significant potential for industrial-scale applications.
Collapse
Affiliation(s)
- Qing Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenhui Jin
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China.
- Xiamen Ocean Vocational College, Xiamen, 361100, China.
| | - Hua Fang
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361100, China
| | - Weizhu Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361100, China
| | - Quanling Xie
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361100, China
| | - Hui Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361100, China
| | - Qian Liu
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
| | - Xian Jiang
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
| | - Shaohua Wang
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
| | - Longtao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiping Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China.
- Xiamen Ocean Vocational College, Xiamen, 361100, China.
| | - Zhuan Hong
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China.
- Xiamen Ocean Vocational College, Xiamen, 361100, China.
| |
Collapse
|
2
|
Li C, Hou S, Lian D, Chen M, Li S, Li P, Wang T, Zhang W, Zhou Y, Jiang J, Ji Y. pH-controlled acetic acid pretreatment for coproduction of low degree of polymerization xylo-oligosaccharides and glucose from corncobs. BIORESOURCE TECHNOLOGY 2025; 415:131702. [PMID: 39490599 DOI: 10.1016/j.biortech.2024.131702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Acetic acid (HAc) pretreatment has been widely used for the production of xylo-oligosaccharides (XOS), requiring harsh reaction conditions because XOS are intermediates during the xylan degradation process. This complexity makes the pretreatment process difficult to regulate. In this study, a pH-controlled HAc pretreatment using sodium hydroxide (NaOH) was proposed to enhance the yield of XOS and to reduce its degree of polymerization (DP) from corncobs (CC). By employing this method (0.3 M-2.7), 49.7 % of XOS with DP 2-6 was obtained, alongside a notable increase in the fraction of XOS with DP 2-4 (10.1 g/L). This performance significantly surpassed that of the HAc alone (0.3 M). Moreover, the glucose yield from CC via pH-controlled HAc pretreatment was as high as 93.1 % after 72-h enzymatic hydrolysis. These results suggested that the pH-controlled HAc pretreatment could be a promising strategy for the coproduction of low-DP XOS and fermentable sugars.
Collapse
Affiliation(s)
- Chenxi Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Shujun Hou
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Dianxing Lian
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Mohaoyang Chen
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Shujun Li
- Key Laboratory of Bio-Based Material Science and Technology, College of Material Science and Engineering, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Ting Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Weiwei Zhang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yawen Zhou
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jianxin Jiang
- State Key Laboratory of Efficient Production of Forest Resources, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Yongjun Ji
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Lin Y, Dong Y, Li X, Cai J, Cai L, Zhang G. Enzymatic production of xylooligosaccharide from lignocellulosic and marine biomass: A review of current progress, challenges, and its applications in food sectors. Int J Biol Macromol 2024; 277:134014. [PMID: 39047995 DOI: 10.1016/j.ijbiomac.2024.134014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Over the last decade, xylooligosaccharides (XOS) have attracted great attentions because of their unique chemical properties and excellent prebiotic effects. Among the current strategies for XOS production, enzymatic hydrolysis is preferred due to its green and safe process, simplicity in equipment, and high control of the degrees of polymerization. This paper comprehensively summarizes various lignocellulosic biomass and marine biomass employed in enzymatic production of XOS. The importance and advantages of enzyme immobilization in XOS production are also discussed. Many novel immobilization techniques for xylanase are presented. In addition, bioinformatics techniques for the mining and designing of new xylanase are also described. Moreover, XOS has exhibited great potential applications in the food industry as diverse roles, such as a sugar replacer, a fat replacer, and cryoprotectant. This review systematically summarizes the current research progress on the applications of XOS in food sectors, including beverages, bakery products, dairy products, meat products, aquatic products, food packaging film, wall materials, and others. It is anticipated that this paper will act as a reference for the further development and application of XOS in food sectors and other fields.
Collapse
Affiliation(s)
- Yuanqing Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China
| | - Yuting Dong
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China; Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China
| | - Xiangling Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
| | - Jinzhong Cai
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China
| | - Lixi Cai
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China; College of Basic Medicine, Putian University, Putian 351100, Fujian, China.
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China.
| |
Collapse
|
4
|
Tao J, Song S, Qu C. Recent Progress on Conversion of Lignocellulosic Biomass by MOF-Immobilized Enzyme. Polymers (Basel) 2024; 16:1010. [PMID: 38611268 PMCID: PMC11013631 DOI: 10.3390/polym16071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
The enzyme catalysis conversion of lignocellulosic biomass into valuable chemicals and fuels showed a bright outlook for replacing fossil resources. However, the high cost and easy deactivation of free enzymes restrict the conversion process. Immobilization of enzymes in metal-organic frameworks (MOFs) is one of the most promising strategies due to MOF materials' tunable building units, multiple pore structures, and excellent biocompatibility. Also, MOFs are ideal support materials and could enhance the stability and reusability of enzymes. In this paper, recent progress on the conversion of cellulose, hemicellulose, and lignin by MOF-immobilized enzymes is extensively reviewed. This paper focuses on the immobilized enzyme performances and enzymatic mechanism. Finally, the challenges of the conversion of lignocellulosic biomass by MOF-immobilized enzyme are discussed.
Collapse
Affiliation(s)
- Juan Tao
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.T.); (S.S.)
| | - Shengjie Song
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.T.); (S.S.)
| | - Chen Qu
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 9808577, Japan
| |
Collapse
|
5
|
Gui Y, Wu Y, Shu T, Hou Z, Hu Y, Li W, Yu L. Multi-point immobilization of GH 11 endo-β-1,4-xylanase on magnetic MOF composites for higher yield of xylo-oligosaccharides. Int J Biol Macromol 2024; 260:129277. [PMID: 38211918 DOI: 10.1016/j.ijbiomac.2024.129277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
GH 11 endo-β-1,4-xylanase (Xy) was a crucial enzyme for xylooligosaccharides (XOS) production. The lower reusability and higher cost of purification has limited the industrial application of Xy. Addressing these challenges, our study utilized various immobilization techniques, different supports and forces for Xy immobilization. This study presents a new method in the development of Fe3O4@PDA@MOF-Xy which is immobilized via multi-point interaction forces, demonstrating a significant advancement in protein loading capacity (80.67 mg/g), and exhibiting remarkable tolerance to acidic and alkaline conditions. This method significantly improved Xy reusability and efficiency for industrial applications, maintaining 60 % activity over 10 cycles. Approximately 23 % XOS production was achieved by Fe3O4@PDA@MOF-Xy. Moreover, the yield of XOS from cobcorn xylan using this system was 1.15 times higher than that of the free enzyme system. These results provide a theoretical and applicative basis for enzyme immobilization and XOS industrial production.
Collapse
Affiliation(s)
- Yifan Gui
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ya Wu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tong Shu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ziqi Hou
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaofeng Hu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
6
|
Geng X, Li Y, Wang R, Jiang S, Liang Y, Li T, Li C, Tao J, Li Z. Enhanced High-Fructose Corn Syrup Production: Immobilizing Serratia marcescens Glucose Isomerase on MOF (Co)-525 Reduces Co 2+ Dependency in Glucose Isomerization to Fructose. Foods 2024; 13:527. [PMID: 38397503 PMCID: PMC10888103 DOI: 10.3390/foods13040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The escalating demand for processed foods has led to the widespread industrial use of glucose isomerase (GI) for high-fructose corn syrup (HFCS) production. This reliance on GIs necessitates continual Co2+ supplementation to sustain high catalytic activity across multiple reaction cycles. In this study, Serratia marcescens GI (SmGI) was immobilized onto surfaces of the metal-organic framework (MOF) material MOF (Co)-525 to generate MOF (Co)-525-GI for use in catalyzing glucose isomerization to generate fructose. Examination of MOF (Co)-525-GI structural features using scanning electron microscopy-energy dispersive spectroscopy, Fourier-transform infrared spectroscopy, and ultraviolet spectroscopy revealed no structural changes after SmGI immobilization and the addition of Co2+. Notably, MOF (Co)-525-GI exhibited optimal catalytic activity at pH 7.5 and 70 °C, with a maximum reaction rate (Vmax) of 37.24 ± 1.91 μM/min and Km value of 46.25 ± 3.03 mM observed. Remarkably, immobilized SmGI exhibited sustained high catalytic activity over multiple cycles without continuous Co2+ infusion, retaining its molecular structure and 96.38% of its initial activity after six reaction cycles. These results underscore the potential of MOF (Co)-525-GI to serve as a safer and more efficient immobilized enzyme technology compared to traditional GI-based food-processing technologies.
Collapse
Affiliation(s)
- Xu Geng
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; (X.G.); (S.J.); (T.L.)
| | - Yi Li
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co., Ltd., Changchun 130033, China; (Y.L.); (Y.L.)
| | - Ruizhe Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.W.); (C.L.)
| | - Song Jiang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; (X.G.); (S.J.); (T.L.)
| | - Yingchao Liang
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co., Ltd., Changchun 130033, China; (Y.L.); (Y.L.)
| | - Tao Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; (X.G.); (S.J.); (T.L.)
| | - Chen Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.W.); (C.L.)
| | - Jin Tao
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co., Ltd., Changchun 130033, China; (Y.L.); (Y.L.)
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; (X.G.); (S.J.); (T.L.)
| |
Collapse
|
7
|
Franco DG, de Almeida AP, Galeano RMS, Vargas IP, Masui DC, Giannesi GC, Ruller R, Zanoelo FF. Exploring the potential of a new thermotolerant xylanase from Rasamsonia composticola (XylRc): production using agro-residues, biochemical studies, and application to sugarcane bagasse saccharification. 3 Biotech 2024; 14:3. [PMID: 38058364 PMCID: PMC10695910 DOI: 10.1007/s13205-023-03844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023] Open
Abstract
Xylanases from thermophilic fungi have a wide range of commercial applications in the bioconversion of lignocellulosic materials and biobleaching in the pulp and paper industry. In this study, an endoxylanase from the thermophilic fungus Rasamsonia composticola (XylRc) was produced using waste wheat bran and pretreated sugarcane bagasse (PSB) in solid-state fermentation. The enzyme was purified, biochemically characterized, and used for the saccharification of sugarcane bagasse. XylRc was purified 30.6-fold with a 22% yield. The analysis using sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed a molecular weight of 53 kDa, with optimal temperature and pH values of 80 °C and 5.5, respectively. Thin-layer chromatography suggests that the enzyme is an endoxylanase and belongs to the glycoside hydrolase 10 family. The enzyme was stimulated by the presence of K+, Ca2+, Mg2+, and Co2+ and remained stable in the presence of the surfactant Triton X-100. XylRc was also stimulated by organic solvents butanol (113%), ethanol (175%), isopropanol (176%), and acetone (185%). The Km and Vmax values for oat spelt and birchwood xylan were 6.7 ± 0.7 mg/mL, 2.3 ± 0.59 mg/mL, 446.7 ± 12.7 µmol/min/mg, and 173.7 ± 6.5 µmol/min/mg, respectively. XylRc was unaffected by different phenolic compounds: ferulic, tannic, cinnamic, benzoic, and coumaric acids at concentrations of 2.5-10 mg/mL. The results of saccharification of PSB showed that supplementation of a commercial enzymatic cocktail (Cellic® CTec2) with XylRc (1:1 w/v) led to an increase in the degree of synergism (DS) in total reducing sugar (1.28) and glucose released (1.05) compared to the control (Cellic® HTec2). In summary, XylRc demonstrated significant potential for applications in lignocellulosic biomass hydrolysis, making it an attractive alternative for producing xylooligosaccharides and xylose, which can serve as precursors for biofuel production.
Collapse
Affiliation(s)
- Daniel Guerra Franco
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
- Laboratório de Bioquímica Geral e Microrganismos, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
| | - Aline Pereira de Almeida
- Laboratório de Microbiologia, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Rodrigo Mattos Silva Galeano
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
- Laboratório de Bioquímica Geral e Microrganismos, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
| | - Isabela Pavão Vargas
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
- Laboratório de Bioquímica Geral e Microrganismos, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
| | - Douglas Chodi Masui
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
- Laboratório de Bioquímica Geral e Microrganismos, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
| | - Giovana Cristina Giannesi
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
- Laboratório de Bioquímica Geral e Microrganismos, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
| | - Roberto Ruller
- Laboratório de Microbiologia, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Fabiana Fonseca Zanoelo
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
- Laboratório de Bioquímica Geral e Microrganismos, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
| |
Collapse
|
8
|
Vickram S, Manikandan S, Deena SR, Mundike J, Subbaiya R, Karmegam N, Jones S, Kumar Yadav K, Chang SW, Ravindran B, Kumar Awasthi M. Advanced biofuel production, policy and technological implementation of nano-additives for sustainable environmental management - A critical review. BIORESOURCE TECHNOLOGY 2023; 387:129660. [PMID: 37573978 DOI: 10.1016/j.biortech.2023.129660] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
This review article critically evaluates the significance of adopting advanced biofuel production techniques that employ lignocellulosic materials, waste biomass, and cutting-edge technology, to achieve sustainable environmental stewardship. Through the analysis of conducted research and development initiatives, the study highlights the potential of these techniques in addressing the challenges of feedstock supply and environmental impact and implementation policies that have historically plagued the conventional biofuel industry. The integration of state-of-the-art technologies, such as nanotechnology, pre-treatments and enzymatic processes, has shown considerable promise in enhancing the productivity, quality, and environmental performance of biofuel production. These developments have improved conversion methods, feedstock efficiency, and reduced environmental impacts. They aid in creating a greener and sustainable future by encouraging the adoption of sustainable feedstocks, mitigating greenhouse gas emissions, and accelerating the shift to cleaner energy sources. To realize the full potential of these techniques, continued collaboration between academia, industry representatives, and policymakers remains essential.
Collapse
Affiliation(s)
- Sundaram Vickram
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - S R Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Jhonnah Mundike
- Department of Environmental Engineering, School of Mines & Mineral Sciences, The Copperbelt University, Riverside Jambo Drive, PO Box 21692, Kitwe, Zambia
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, BIHER, Chennai, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea; Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
9
|
Padhan B, Ray M, Patel M, Patel R. Production and Bioconversion Efficiency of Enzyme Membrane Bioreactors in the Synthesis of Valuable Products. MEMBRANES 2023; 13:673. [PMID: 37505039 PMCID: PMC10384387 DOI: 10.3390/membranes13070673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The demand for bioactive molecules with nutritional benefits and pharmaceutically important properties is increasing, leading researchers to develop modified production strategies with low-cost purification processes. Recent developments in bioreactor technology can aid in the production of valuable products. Enzyme membrane bioreactors (EMRs) are emerging as sustainable synthesis processes in various agro-food industries, biofuel applications, and waste management processes. EMRs are modified reactors used for chemical reactions and product separation, particularly large-molecule hydrolysis and the conversion of macromolecules. EMRs generally produce low-molecular-weight carbohydrates, such as oligosaccharides, fructooligosaccharides, and gentiooligosaccharides. In this review, we provide a comprehensive overview of the use of EMRs for the production of valuable products, such as oligosaccharides and oligodextrans, and we discuss their application in the bioconversion of inulin, lignin, and sugars. Furthermore, we critically summarize the application and limitations of EMRs. This review provides important insights that can aid in the production of valuable products by food and pharmaceutical industries, and it is intended to assist scientists in developing improved quality and environmentally friendly prebiotics using EMRs.
Collapse
Affiliation(s)
- Bandana Padhan
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Madhubanti Ray
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon 21938, Republic of Korea
| |
Collapse
|
10
|
Manikandan S, Vickram S, Sirohi R, Subbaiya R, Krishnan RY, Karmegam N, Sumathijones C, Rajagopal R, Chang SW, Ravindran B, Awasthi MK. Critical review of biochemical pathways to transformation of waste and biomass into bioenergy. BIORESOURCE TECHNOLOGY 2023; 372:128679. [PMID: 36706818 DOI: 10.1016/j.biortech.2023.128679] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biofuel or biogas have become the primary source of bio-energy, providing an alternative to conventionally used energy that can meet the growing energy demand for people all over the world while reducing greenhouse gas emissions. Enzyme hydrolysis in bioethanol production is a critical step in obtaining sugars fermented during the final fermentation process. More efficient enzymes are being researched to provide a more cost-effective technique during enzymatic hydrolysis. The exploitation of microbial catabolic biochemical reactions to produce electric energy can be used for complex renewable biomasses and organic wastes in microbial fuel cells. In hydrolysis methods, a variety of diverse enzyme strategies are used to promote efficient bioethanol production from various lignocellulosic biomasses like agricultural wastes, wood feedstocks, and sea algae. This paper investigates the most recent enzyme hydrolysis pathways, microbial fermentation, microbial fuel cells, and anaerobic digestion in the manufacture of bioethanol/bioenergy from lignocellulose biomass.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3#, Shaanxi, Yangling 712100, China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248001 Uttarakhand, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Radhakrishnan Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam 686 518, Kerala, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, India
| | - C Sumathijones
- Department of Pharmacology, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, India
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India; Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3#, Shaanxi, Yangling 712100, China.
| |
Collapse
|
11
|
Kaur P, Khatri M, Singh G, Selvaraj M, Assiri MA, Lalthazuala Rokhum S, Kumar Arya S, Jones S, Greff B, Woong Chang S, Ravindran B, Awasthi MK. Xylopentose production from crop residue employing xylanase enzyme. BIORESOURCE TECHNOLOGY 2023; 370:128572. [PMID: 36603755 DOI: 10.1016/j.biortech.2022.128572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
To produce xylo-oligosaccharides (XOS) from the agriculture waste, which included, green coconut and vegetable cocktail. The two pretreatment - hydrogen peroxide-acetic acid (HP-AC) and sodium hypochlorite-sodium hydroxide (SH-SH) - were used for this study. The optimal conditions for the pretreatment were 80 °C, 4.0 % NaClO, and 2 h, followed by 0.08 % NaOH, 55 °C, and 1 h. Further enzymatic hydrolysis of green coconut (GC) and vegetable cocktail (VC) were performed and found in case of GC, the best outcomes were observed. Different types of XOS were obtained from the treated biomass whereas a single type of XOS xylo-pentose was obtained in high quantity (96.44 % and 93.09 % from CG and VC respectively) with the production of other XOS < 2 %. This study presents a reasonably secure and economical method for turning secondary crop residue into XOS and fermentable sugars.
Collapse
Affiliation(s)
- Pritam Kaur
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3# Shaanxi, Yangling 712100, China; Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Sumathi Jones
- Department of Pharmacology, Sree Balaji Dental College and Hospital, BIHER, Chennai 600100, India
| | - Babett Greff
- Department of Food Science, Albert Casimir Faculty at Mosonmagyaróvár, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon- Si, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon- Si, Gyeonggi-Do 16227, Republic of Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
12
|
Xu S, Qi X, Gao S, Zhang Y, Wang H, Liang Y, Kong F, Wang R, Wang Y, Yang S, An Y. The strategy of cell extract based metal organic frameworks (CE-MOF) for improved enzyme characteristics. Enzyme Microb Technol 2023; 162:110134. [DOI: 10.1016/j.enzmictec.2022.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
|