1
|
Takeda PY, Paula CT, Dias MES, Borges ADV, Damianovic MHRZ. Achieving stable nitrogen removal through mainstream partial nitrification, anammox and denitrification (SNAD) with a hybrid biofilm-granular reactor. CHEMOSPHERE 2025; 372:144105. [PMID: 39800325 DOI: 10.1016/j.chemosphere.2025.144105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR). The incorporation of hybrid biomass in the form of biofilms and granules resulted in a significant improvement in ammonium oxidation, increasing the efficiency from 45% to 60%. This outcome underscores the significance of biomass retention as a crucial parameter in achieving optimal performance. Furthermore, extending the HRT resulted in a significant improved nitrogen removal, increasing it from 40% (8h) to 70% (12h), which was attributed to the enhanced specific activities of ammonium-oxidizing bacteria (AOB) and anammox bacteria (AnAOB). Microbial characterization unveiled the emergence of partial denitrifiers (Thauera genus) and the suppression of nitrite-oxidizing bacteria (NOB) (Nitrospira genus) at low aeration rates (0.35 L min-1.L-1reactor; estimated 0.5 mgDO.L-1). Notably, stable operation persisted throughout the experimental period, primarily due to the consistent nitrite supply from partial nitrification/denitrification. Our findings highlight the potential of innovative hybrid reactor configuration, for achieving stable and efficient SNAD performance in mainstream wastewater treatment.
Collapse
Affiliation(s)
- Paula Yumi Takeda
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil.
| | - Carolina Tavares Paula
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| | - Maria Eduarda Simões Dias
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| | - André do Vale Borges
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| | - Márcia Helena Rissato Zamariolli Damianovic
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| |
Collapse
|
2
|
Wen R, Deng J, Yang H, Li YY, Cheng H, Liu J. A chemically enhanced primary treatment and anammox-based process for sustainable municipal wastewater treatment: The advantage and application prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124406. [PMID: 39914215 DOI: 10.1016/j.jenvman.2025.124406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Low-carbon nitrogen removal, bioenergy production, and phosphorus recovery are key goals for sustainable municipal wastewater treatment. Traditional activated sludge processes face an energy demand conflict. Anaerobic ammonium oxidation (Anammox) offers a solution to this issue, with the A-B process providing a sustainable approach. Stable and cost-effective nitrite supply for mainstream anammox has gained attention, while the interactions between A-B stage processes are also crucial. This paper reviews the benefits and challenges of mainstream anammox, bioenergy, and phosphorus recovery. A combined process of chemically enhanced primary treatment, partial denitrification and anammox is identified as effective for sustainable treatment. Additionally, the stable nitrite supply from the sidestream partial nitrification provides a 54% nitrogen removal contribution to the mainstream anammox. Anaerobic digestion with sulfate reduction is proposed as an efficient method for simultaneous bioenergy and phosphorus recovery from iron-enhanced primary sludge. The recycling of iron and sulfate reduces excess sludge and cuts costs. A novel wastewater treatment scheme, supported by a mass balance analysis, is presented; the proposed process is capable of recovering >50% of the carbon and phosphorus, while reduced 40% dosing of Fe and S chemicals, reducing the cost of chemical dosing and treatment of the digestate while meeting the high-quality effluent. The paper also explores the potential for transitioning from conventional activated sludge processes and suggests directions for future research.
Collapse
Affiliation(s)
- Ruolan Wen
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Jiayuan Deng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Huan Yang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.
| |
Collapse
|
3
|
Wei Y, Xia W, Qian Y, Rong C, Ye M, Chen Y, Kikuchi J, Li YY. Revealing microbial compatibility of partial nitritation/Anammox biofilm from sidestream to mainstream applications: Origins, dynamics, and interrelationships. BIORESOURCE TECHNOLOGY 2025; 418:131963. [PMID: 39653175 DOI: 10.1016/j.biortech.2024.131963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Biofilms offer a solution to the challenge of low biomass retention faced in mainstream partial nitritation/Anammox (PN/A) applications. In this study, a one-stage PN/A reactor derived from initial granular sludge was successfully transformed into a biofilm system using shedding carriers. Environmental stressors, such as ammonium nitrogen concentration and organic matter, significantly affected the competitive dynamics and dominant species composition between Ca. Kuenenia and Ca. Brocadia. Under approximately 500 mg/L NH4+-N, Ca. Brocadia emerged as the dominant anammox bacteria species, but was subsequently replaced by Ca. Kuenenia in the presence of approximately 54 mg COD/L CH3COONa. Moreover, Chloroflexi species on the original biofilm exhibited an associated relationship with the growth of Ca. Kuenenia in new biofilm. The biofilm assembly and microbial community migration uniquely reveal the microbial niche dynamics. This study provides valuable insights for PN/A biofilm applications facing diverse challenges of environmental stresses in the transition from sidestream to mainstream.
Collapse
Affiliation(s)
- Yanxiao Wei
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Weizhe Xia
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yunzhi Qian
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
| | - Chao Rong
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
4
|
Xiong F, Dai T, Zheng Y, Wen D, Li Q. Enhanced AHL-mediated quorum sensing accelerates the start-up of biofilm reactors by elevating the fitness of fast-growing bacteria in sludge and biofilm communities. WATER RESEARCH 2024; 257:121697. [PMID: 38728787 DOI: 10.1016/j.watres.2024.121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Quorum sensing (QS)-based manipulations emerge as a promising solution for biofilm reactors to overcome challenges from inefficient biofilm formation and lengthy start-ups. However, the ecological mechanisms underlying how QS regulates microbial behaviors and community assembly remain elusive. Herein, by introducing different levels of N-acyl-homoserine lactones, we manipulated the strength of QS during the start-up of moving bed biofilm reactors and compared the dynamics of bacterial communities. We found that enhanced QS elevated the fitness of fast-growing bacteria with high ribosomal RNA operon (rrn) copy numbers in their genomes in both the sludge and biofilm communities. This led to notably increased extracellular substance production, as evidenced by strong positive correlations between community-level rrn copy numbers and extracellular proteins and polysaccharides (Pearson's r = 0.529-0.830, P < 0.001). Network analyses demonstrated that enhanced QS significantly promoted the ecological interactions among taxa, particularly cooperative interactions. Bacterial taxa with higher network degrees were more strongly correlated with extracellular substances, suggesting their crucial roles as public goods in regulating bacterial interactions and shaping network structures. However, the assembly of more cooperative communities in QS-enhanced reactors came at the cost of decreased network stability and modularity. Null model and dissimilarity-overlap curve analysis revealed that enhanced QS strengthened stochastic processes in community assembly and rendered the universal population dynamics more convergent. Additionally, these shaping effects were consistent for both the sludge and biofilm communities, underpinning the planktonic-to-biofilm transition. This work highlights that QS manipulations efficiently drive community assembly and confer specialized functional traits to communities by recruiting taxa with specific life strategies and regulating interspecific interactions. These ecological insights deepen our understanding of the rules governing microbial societies and provide guidance for managing engineering ecosystems.
Collapse
Affiliation(s)
- Fuzhong Xiong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yuhan Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
5
|
Zhao Y, Zhang J, Chen Z, Wang Q. Bio-promoter mediated denitrification recovery from Cd(II) stress: Microbial activity resilience, electron behavior enhancement and microbial community evolution. BIORESOURCE TECHNOLOGY 2024; 402:130780. [PMID: 38703963 DOI: 10.1016/j.biortech.2024.130780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Denitrification is fragile to toxic substances, while currently there are few regulation strategies for toxic substance-stressed denitrification. This study proposed a combined bio-promoter composed of basic bio-promoter (cytokinin, biotin, L-cysteine, and flavin adenine dinucleotide) and phosphomolybdic acid (PMo12) to recover cadmium(II) (Cd(II)) stressed denitrification. By inhibiting 58.02% and 48.84% of nitrate reductase and nitrite reductase activities, Cd(II) caused all the influent nitrogen to accumulate as NO3--N and NO2--N. Combined bio-promoter shortened the recovery time by 21 cycles and improved nitrogen removal efficiency by 10% as the synergistic effect of basic bio-promoter and PMo12. Basic bio-promoter enhanced antioxidant enzyme activities for reactive oxygen species clearance and recovered 23.30% of nicotinamide adenine dinucleotide for sufficient electron donors. Meanwhile, PMo12 recovered electron carriers contents, increasing the electron transfer activity by 60.81% compared with self-recovery. Bio-promoters enhanced the abundance of denitrifiers Seminibacterium and Dechloromonas, which was positively correlated with rapid recovery of denitrification performance.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinshuang Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhihui Chen
- China Water Resources Bei Fang Investigation, Design & Research CO.LTD, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
6
|
Wang H, Liu X, Hua Y, Xu H, Chen Y, Yang D, Dai X. Formation of autotrophic nitrogen removal granular sludge driven by the dual-partition airlift internal circulation: Insights from performance assessment, community succession, and metabolic mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120158. [PMID: 38271883 DOI: 10.1016/j.jenvman.2024.120158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Granular sludge has been recognized as an effective method for the application and industrialization of the anammox-based process due to its good biomass retention capacity and environmental tolerance. In this study, a one-stage autotrophic nitrogen removal (ANR) dual-partition system with airlift internal circulation was implemented for 320 days. A high nitrogen removal efficiency of 84.6% was obtained, while the nitrogen removal rate reached 1.28 g-N/L/d. ANR granular sludge dominated by Nitrosomonas and Candidatus Brocadia was successfully cultivated. Results showed that activity and abundance of functional flora first increased with granulation process, but eventually declined slightly when particle size exceeded the optimal range. Total anammox activity was observed to be significantly correlated with protein content (R2 = 0.9623) and nitrogen removal performance (R2 = 0.8796). Correlation network revealed that AnAOB had complex interactions with other bacteria, both synergy for nitrogen removal and competition for substrate. Changes in abundances of genes encoding the Carbohydrate Metabolism, Energy Metabolism, and Membrane Transport suggested energy production and material transfer were possibly blocked with further sludge granulation. Formation of ANR granular sludge promoted the interactions and metabolism of functional microorganisms, and the complex nitrogen metabolic pathways improved the performance stability. These results validated the feasibility of granule formation in the airlift dual-partition system and revealed the response of the ANR system to sludge granulation.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoguang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yu Hua
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Haolian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yongdong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
7
|
Zhang Y, Zhang J, Yu D, Li J, Zhao X, Ma G, Zhi J, Dong G, Miao Y. Migration of microorganisms between nitrification-denitrification flocs, anammox biofilms and blank carriers during mainstream anammox start-up. BIORESOURCE TECHNOLOGY 2024; 393:130129. [PMID: 38040314 DOI: 10.1016/j.biortech.2023.130129] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
To solve the shortage of inoculum, the feasibility of establishing simultaneous partial nitrification, anammox, and denitrification (SNAD) reactor through inoculating nitrification-denitrification sludge, anammox biofilm and blank carriers was investigated. Advanced nitrogen removal efficiency of 91.2 ± 3.6 % was achieved. Bacteria related to nitrogen removal and fermentation were enriched in anammox biofilm, blank carriers and flocs, and the abundance of dominant anaerobic ammonia oxidizing bacteria (AnAOB), Candidatus Brocadia, reached 3.4 %, 0.5 % and 0.3 %, respectively. Candidatus Competibacter and Calorithrix became the dominant denitrifying bacteria (DNB) and fermentative bacteria (FB), respectively. The SNAD system was successfully established, and new mature biofilms formed in blank carriers, which could provide inoculum for other anammox processes. Partial nitrification, partial denitrification and aerobic_chemoheterotrophy were existed and facilitated AnAOB enrichment. Microbial correlation networks revealed the cooperation between DNB, FB and AnAOB that promoted nitrogen removal. Overall, the SNAD process was started up through inoculating more accessible inoculum.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jianhua Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiawen Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xinchao Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guocheng Ma
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiaru Zhi
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guoqing Dong
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yuanyuan Miao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
8
|
Wang H, Gong H, Dai X, Yang M. Metagenomics reveals the microbial community and functional metabolism variation in the partial nitritation-anammox process: From collapse to recovery. J Environ Sci (China) 2024; 135:210-221. [PMID: 37778796 DOI: 10.1016/j.jes.2023.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 10/03/2023]
Abstract
Mainstream partial nitritation-anammox (PNA) process easily suffers from performance instability and even reactor collapse in application. Thus, it is of great significance to unveil the characteristic of performance recovery, understand the intrinsic mechanism and then propose operational strategy. In this study, we combined long-term reactor operation, batch tests, and metagenomics to reveal the succession of microbial community and functional metabolism variation from system collapse to recovery. Proper aeration control (0.10-0.25 mg O2/L) was critical for performance recovery. It was also found that Candidatus Brocadia became the dominant flora and its abundance increased from 3.5% to 11.0%. Significant enhancements in carbon metabolism and phospholipid biosynthesis were observed during system recovery, and the genes abundance related to signal transduction was dramatically increased. The up-regulation of sdh and suc genes showed the processes of succinate dehydrogenation and succinyl-CoA synthesis might stimulate the production of amino acids and the synthesis of proteins, thereby possibly improving the activity and abundance of AnAOB, which was conducive to the performance recovery. Moreover, the increase in abundance of hzs and hdh genes suggested the enhancement of the anammox process. Changes in the abundance of key genes involved in nitrogen metabolism indicated that nitrogen removal pathway was more diverse after system recovery. The achievement of performance recovery was driven by anammox, nitrification and denitrification coupled with dissimilatory nitrate reduction to ammonium. These results provide deeper insights into the recovery mechanism of PNA system and also provide a potential regulation strategy for the stable operation of the mainstream PNA process.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hui Gong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Min Yang
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
9
|
Quinton AR, McDowell HB, Hoiczyk E. Encapsulins: Nanotechnology's future in a shell. ADVANCES IN APPLIED MICROBIOLOGY 2023; 125:1-48. [PMID: 38783722 DOI: 10.1016/bs.aambs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Encapsulins, virus capsid-like bacterial nanocompartments have emerged as promising tools in medicine, imaging, and material sciences. Recent work has shown that these protein-bound icosahedral 'organelles' possess distinct properties that make them exceptionally usable for nanotechnology applications. A key factor contributing to their appeal is their ability to self-assemble, coupled with their capacity to encapsulate a wide range of cargos. Their genetic manipulability, stability, biocompatibility, and nano-size further enhance their utility, offering outstanding possibilities for practical biotechnology applications. In particular, their amenability to engineering has led to their extensive modification, including the packaging of non-native cargos and the utilization of the shell surface for displaying immunogenic or targeting proteins and peptides. This inherent versatility, combined with the ease of expressing encapsulins in heterologous hosts, promises to provide broad usability. Although mostly not yet commercialized, encapsulins have started to demonstrate their vast potential for biotechnology, from drug delivery to biofuel production and the synthesis of valuable inorganic materials. In this review, we will initially discuss the structure, function and diversity of encapsulins, which form the basis for these emerging applications, before reviewing ongoing practical uses and highlighting promising applications in medicine, engineering and environmental sciences.
Collapse
Affiliation(s)
- Amy Ruth Quinton
- School of Biosciences, The Krebs Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Harry Benjamin McDowell
- School of Biosciences, The Krebs Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Egbert Hoiczyk
- School of Biosciences, The Krebs Institute, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
10
|
Wang L, Zhou W, Zhang M, Zheng Z, Zhao S, Xing C, Jia J, Liu C. Environmental ammonia analysis based on exclusive nitrification by nitrifying biofilm screened from natural bioresource. CHEMOSPHERE 2023; 336:139221. [PMID: 37327822 DOI: 10.1016/j.chemosphere.2023.139221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Biofilm-based biological nitrification is widely used for ammonia removal, while hasn't been explored for ammonia analysis. The stumbling block is the coexist of nitrifying and heterotrophic microbes in real environment resulting in non-specific sensing. Herein, an exclusive ammonia sensing nitrifying biofilm was screened from natural bioresource, and a bioreaction-detection system for the on-line analysis of environmental ammonia based on biological nitrification was reported. The nitrifying microbes were aggregated into a nitrifying biofilm through a result-oriented bioresource enrichment strategy. The predominant nitrifying population and progressive surface reaction in the plug flow bioreactor led to the exclusive and exhaustive ammonia biodegradation for the establishment of a novel analytical method. The on-line ammonia monitoring prototype achieved complete biodegradation for determining ammonium nitrogen within 5 min and showed exceptional reliability in long-term real sample measurements without frequent calibration. This work offers a low-threshold natural screening paradigm for developing sustainable bioresource-based analytical technologies.
Collapse
Affiliation(s)
- Liang Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China
| | - Wuping Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China
| | - Mengchen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China.
| | - Zehua Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China
| | - Song Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China
| | - Chao Xing
- UQ Dow Center, School of Chemical Engineering, The University of Queensland, St Lucia, 4072, Australia
| | - Jianbo Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China
| | - Changyu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China.
| |
Collapse
|
11
|
Yang E, Chen J, Liu K, Jiang J, Wang H, Wu S, Shi L, Jiang J, Sanjaya EH, Chen H. Intensifying single-stage denitrogen by a dissolved oxygen-differentiated airlift internal circulation reactor under organic matter stress: Nitrogen removal pathways and microbial interactions. WATER RESEARCH 2023; 241:120120. [PMID: 37270946 DOI: 10.1016/j.watres.2023.120120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Current research focuses on efficient single-stage nitrogen removal from organic matter wastewater using the partial nitritation-anammox (PNA) process. In this study, we constructed a single-stage partial nitritation-anammox and denitrification (SPNAD) system using a dissolved oxygen-differentiated airlift internal circulation reactor. The system was operated continuously for 364 days at 250 mg/L NH4+-N. During the operation, the COD/NH4+-N ratio (C/N) was increased from 0.5 to 4 (0.5, 1, 2, 3, and 4), and the aeration rate (AR) gradually increased. The results showed that the SPNAD system maintained efficient and stable operation at C/N = 1-2 and AR = 1.4-1.6 L/min, with an average total nitrogen removal efficiency of 87.2%. The removal pathways of pollutants in the system and the interactions between microbes were revealed by analyzing the changes in sludge characteristics and microbial community structure at different phases. As the influent C/N increased, the relative abundance of Nitrosomonas and Candidatus Brocadia decreased, and that of denitrifying bacteria, such as Denitratisoma, increased to 44%. The nitrogen removal pathway of the system gradually changed from autotrophic nitrogen removal to nitrification-denitrification. At the optimum C/N, the SPNAD system synergistically removed nitrogen through PNA and nitrification-denitrification. Overall, the unique reactor configuration facilitated the formation of dissolved oxygen compartments, providing a suitable environment for different microbes. An appropriate organic matter concentration maintained the dynamic stability of microbial growth and interactions. These enhance microbial synergy and enable efficient single-stage nitrogen removal.
Collapse
Affiliation(s)
- Enzhe Yang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jing Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Ke Liu
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha 410007, China
| | - Jianhong Jiang
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha 410007, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sha Wu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Lixiu Shi
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Jingyi Jiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | | | - Hong Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
12
|
Lúcio DSG, Dias MES, Ribeiro R, Tommaso G. Evaluating the potential of a new reactor configuration to enhance simultaneous organic matter and nitrogen removal in dairy wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57490-57502. [PMID: 36966249 DOI: 10.1007/s11356-023-26341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/04/2023] [Indexed: 05/10/2023]
Abstract
The dairy industry is a very productive sector worldwide and known for producing great volumes of wastewater that is rich in organic matter and nutrients. Apart from fat, the organic matter in such effluents is easily degradable, demanding an external carbon source for conventional denitrification. In this manner, new configurations of reactors promoting a suitable environment for more sustainable nitrogen removal are beyond required-they are paramount. Therefore, the performance of a structured-bed hybrid baffled reactor (SBHBR) with anaerobic and oxic/anoxic chambers was designed and assessed for treating different dairy wastewaters. A combination of baffled and biofilm-structured systems under intermittent aeration was the solution proposed to obtain a new method for nitrogen removal under low COD/TN ratios. The COD/TN ratios tested were 2.1 ± 0.6, 0.84 ± 0.5, and 0.35 ± 0.1 in the inlet of the O/A chambers for operational stages I, II, and III, respectively. The SBHBR provided COD removal efficiencies above 90% in all experimental stages. During stage III, the process had nitrification and denitrification efficiencies of 85.9 ± 17% and 85.2 ± 9%, respectively, resulting in a TN removal efficiency of 74.6 ± 14.7%. Stoichiometric calculations were used to corroborate the activity of bacteria that could perform the anammox pathways as their main mechanisms.
Collapse
Affiliation(s)
- Danilo S G Lúcio
- Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Maria Eduarda S Dias
- Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Rogers Ribeiro
- Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Giovana Tommaso
- Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, Brazil.
| |
Collapse
|
13
|
Jia F, Liu C, Zhao X, Chen J, Zhang Z, Yao H. Real-time monitoring control of sequencing batch anammox process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15414-15421. [PMID: 36169829 DOI: 10.1007/s11356-022-23233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Rapid recognition and timely management of the emergent situation in wastewater treatment are crucial to maintaining the stable operation of anammox process. In this study, the feasibility of pH, conductivity (Cond) and oxidation reduction potential (ORP) profiles for monitoring and controlling anammox process for synthetic wastewater treatment was evaluated, and the practicability of the method was further verified by using real wastewater. The results showed that the characteristic values of these parameter profiles exhibited high accuracy and reproducibility in indicating the endpoint of the anammox reaction. Moreover, the positive correlations between TN removal and ΔpH, ΔCond and ΔORP were found. Nevertheless, only the slope of the Cond curve was found to be significantly linearly correlated with the specific anammox activity, which was further validated by the Haldane inhibition kinetic model, suggesting that the Cond curve can be used as an immediate feedback signal on whether anammox activity was inhibited. Overall, this study presents a fast, convenient and accurate strategy based on online real-time monitoring of instrument parameters, which was conducive to tracking the nitrogen removal process dynamics and performing the necessary operations in a timely manner, and to improving the stability of anammox process in wastewater treatment.
Collapse
Affiliation(s)
- Fangxu Jia
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Chenyu Liu
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Xingcheng Zhao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Jiayi Chen
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Ziyan Zhang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| |
Collapse
|
14
|
Wang X, Yang H, Wang J. Gel-immobilized partial nitritation/anammox achieves reliable nitrogen removal at different concentrations of nitrogen and reactivation processes. BIORESOURCE TECHNOLOGY 2023; 370:128561. [PMID: 36587771 DOI: 10.1016/j.biortech.2022.128561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
A two-stage partial nitritation/anammox process based on microbial encapsulation (PN/A-E) was established. The nitrogen removal characteristics of PN/A-E under high and low ammonia nitrogen and after reactivation following a long-term shutdown were comprehensively investigated and compared with anammox granular sludge (AnGS). The stable PN process did not depend on high ammonia nitrogen, and the nitrite accumulation rate reached 95.2 ± 0.7 %. The overall nitrogen removal rate of encapsulated anammox bacteria was twice that of the AnGS, and it was more tolerant to external interference. Moreover, PN/A-E showed good reactivation performance, and the total nitrogen in the effluent was 10.0 ± 1.4 mg·L-1 when the final hydraulic retention time was 2.18 h. The immobilized fillers support an increase in ammonia-oxidizing bacteria under restricted conditions and were more conducive to the dominance of functional bacteria and the stability of microbial community under low ammonia nitrogen. This study provides a positive method to achieve a reliable PN/A.
Collapse
Affiliation(s)
- XiaoTong Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China.
| | - JiaWei Wang
- Department of Municipal and Environmental Engineering, Hebei University of Architecture, Zhangjiakou 075000, China
| |
Collapse
|
15
|
Chen H, Liu K, Yang E, Chen J, Gu Y, Wu S, Yang M, Wang H, Wang D, Li H. A critical review on microbial ecology in the novel biological nitrogen removal process: Dynamic balance of complex functional microbes for nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159462. [PMID: 36257429 DOI: 10.1016/j.scitotenv.2022.159462] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The novel biological nitrogen removal process has been extensively studied for its high nitrogen removal efficiency, energy efficiency, and greenness. A successful novel biological nitrogen removal process has a stable microecological equilibrium and benign interactions between the various functional bacteria. However, changes in the external environment can easily disrupt the dynamic balance of the microecology and affect the activity of functional bacteria in the novel biological nitrogen removal process. Therefore, this review focuses on the microecology in existing the novel biological nitrogen removal process, including the growth characteristics of functional microorganisms and their interactions, together with the effects of different influencing factors on the evolution of microbial communities. This provides ideas for achieving a stable dynamic balance of the microecology in a novel biological nitrogen removal process. Furthermore, to investigate deeply the mechanisms of microbial interactions in novel biological nitrogen removal process, this review also focuses on the influence of quorum sensing (QS) systems on nitrogen removal microbes, regulated by which bacteria secrete acyl homoserine lactones (AHLs) as signaling molecules to regulate microbial ecology in the novel biological nitrogen removal process. However, the mechanisms of action of AHLs on the regulation of functional bacteria have not been fully determined and the composition of QS system circuits requires further investigation. Meanwhile, it is necessary to further apply molecular analysis techniques and the theory of systems ecology in the future to enhance the exploration of microbial species and ecological niches, providing a deeper scientific basis for the development of a novel biological nitrogen removal process.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Ke Liu
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha 410007, China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Jing Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Yanling Gu
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China.
| | - Min Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
16
|
The granular sludge membrane bioreactor: A new tool to enhance Anammox performance and alleviate membrane fouling. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zhang L, Jiang L, Zhang J, Li J, Peng Y. Enhancing nitrogen removal through directly integrating anammox into mainstream wastewater treatment: Advantageous, issues and future study. BIORESOURCE TECHNOLOGY 2022; 362:127827. [PMID: 36029988 DOI: 10.1016/j.biortech.2022.127827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has great potential to be applied to the process of nitrogen removal from mainstream wastewater. However, directly applying complete anammox to the mainstream is typically hindered by low temperatures, a low ammonia concentration, and high organic matter concentrations. Directly integrating anammox into mainstream treatment by enhancing the in-situ enrichment of anammox bacteria in wastewater treatment plants (WWTPs) could effectively improve the nitrogen removal efficiency and reduce the treatment cost. A certain anammox bacteria abundance in full-scale WWTPs provides the feasibility of directly integrating anammox into mainstream treatment and realizing partial mainstream anammox. The technical development status of partial anammox and the mechanisms of achieving partial mainstream anammox by aeration and organic control are summarized. This review provides an enhanced understanding of this novel technical route of partial mainstream anammox treatment for improving the quality, performance, and prospects for this technology to be used in upgrading WWTPs.
Collapse
Affiliation(s)
- Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ling Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiangtao Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
18
|
Yang E, Chen J, Jiang Z, Deng Z, Tu Z, Wang H, Wu S, Kong Z, Hendrik Sanjaya E, Chen H. Insights into rapidly recovering the autotrophic nitrogen removal performance of single-stage partial nitritation-anammox systems: Reconstructing granular sludge and its functional microbes synergy. BIORESOURCE TECHNOLOGY 2022; 361:127750. [PMID: 35944867 DOI: 10.1016/j.biortech.2022.127750] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Partial nitritation-anammox (PNA) deteriorates easily and is difficult to recover. After an airlift inner-circulation partition bioreactor was impacted by low NH4+-N wastewater containing organic matter, Nitrospira and Denitratisoma propagated rapidly, granular sludge disintegrated, and the total nitrogen removal efficiency (TNRE) decreased from 68.27 % to 5.97 %. This study used a unique strategy to recover deteriorated single-stage PNA systems and explored the mechanism of rapid performance recovery. The TNRE of the system recovered up to 61.77 % in 43 days. The high nitrogen loading rate and hydraulic shear force from the airlift caused the sludge in the reactor to granulate again. The microbial community structure recovered, with a decrease in the abundance of Nitrospira (0.05 %) and enrichment of Candidatus Brocadia (8.82 %). A favorable synergy among functional microbes in the reactor was thus re-established, promoting the rapid recovery of the nitrogen removal performance. This study provides a feasible recovery strategy for PNA processes.
Collapse
Affiliation(s)
- Enzhe Yang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jing Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Ziyi Jiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhengyu Deng
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha 410007, China
| | - Zhi Tu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha 410007, China
| | - Hong Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sha Wu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | | | - Hong Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
19
|
Vishnyakova A, Popova N, Artemiev G, Botchkova E, Litti Y, Safonov A. Effect of Mineral Carriers on Biofilm Formation and Nitrogen Removal Activity by an Indigenous Anammox Community from Cold Groundwater Ecosystem Alone and Bioaugmented with Biomass from a “Warm” Anammox Reactor. BIOLOGY 2022; 11:biology11101421. [PMID: 36290325 PMCID: PMC9598201 DOI: 10.3390/biology11101421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary During more than 50 years of exploitation of the sludge repositories near Chepetsky Mechanical Plant (Glazov, Udmurtia, Russia) containing solid wastes of uranium and processed polymetallic concentrate, the soluble compounds entered the upper aquifer due to infiltration. Nowadays, this has resulted in a high level of pollution of the groundwater with reduced and oxidized nitrogen compounds. In this work, quartz, kaolin, and bentonite clays from various deposits were shown to induce biofilm formation and enhance nitrogen removal by an indigenous microbial community capable of anaerobic ammonium oxidation with nitrite (anammox) at low temperatures. The addition of a “warm” anammox community was also effective in further improving nitrogen removal and expanding the list of mineral carriers most suitable for creating a permeable reactive barrier. It has been suggested that the anammox activity is determined by the presence of essential trace elements in the carrier, the morphology of its surface, and most importantly, competition from rapidly growing microbial groups. Future work was discussed to adapt the “warm” anammox community to cold and provide the anammox community with nitrite through a partial denitrification route within the scope of sustainable anammox-based bioremediation of a nitrogen-polluted cold aquifer. In this unique habitat, novel species of anammox bacteria that are adapted to cold and heavy nitrogen pollution can be discovered. Abstract The complex pollution of aquifers by reduced and oxidized nitrogen compounds is currently considered one of the urgent environmental problems that require non-standard solutions. This work was a laboratory-scale trial to show the feasibility of using various mineral carriers to create a permeable in situ barrier in cold (10 °C) aquifers with extremely high nitrogen pollution and inhabited by the Candidatus Scalindua-dominated indigenous anammox community. It has been established that for the removal of ammonium and nitrite in situ due to the predominant contribution of the anammox process, quartz, kaolin clays of the Kantatsky and Kamalinsky deposits, bentonite clay of the Berezovsky deposit, and zeolite of the Kholinsky deposit can be used as components of the permeable barrier. Biofouling of natural loams from a contaminated aquifer can also occur under favorable conditions. It has been suggested that the anammox activity is determined by a number of factors, including the presence of the essential trace elements in the carrier and the surface morphology. However, one of the most important factors is competition with other microbial groups that can develop on the surface of the carrier at a faster rate. For this reason, carriers with a high specific surface area and containing the necessary microelements were overgrown with the most rapidly growing microorganisms. Bioaugmentation with a “warm” anammox community from a laboratory reactor dominated by Ca. Kuenenia improved nitrogen removal rates and biofilm formation on most of the mineral carriers, including bentonite clay of the Dinozavrovoye deposit, as well as loamy rock and zeolite-containing tripoli, in addition to carriers that perform best with the indigenous anammox community. The feasibility of coupled partial denitrification–anammox and the adaptation of a “warm” anammox community to low temperatures and hazardous components contained in polluted groundwater prior to bioaugmentation should be the scope of future research to enhance the anammox process in cold, nitrate-rich aquifers.
Collapse
Affiliation(s)
- Anastasia Vishnyakova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Grigoriy Artemiev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Ekaterina Botchkova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Yuriy Litti
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
- Correspondence: ; Tel.: +7-(926)-369-92-43
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|