1
|
Jia HY, Xu T, Wang C, Zhu HW, Li BZ, Yuan YJ, Liu ZH. Emerging biotechnological strategies advancing biological lignin valorization towards polyhydroxyalkanoates. BIORESOURCE TECHNOLOGY 2025; 424:132278. [PMID: 39986625 DOI: 10.1016/j.biortech.2025.132278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Lignin is the largest renewable aromatic resource available for producing high-value products such as biomaterials, biofuels, and chemicals. Polyhydroxyalkanoate (PHA) is a biodegradable and biocompatible polymer synthesized by various microorganisms, offering broad application potential. Microbial conversion of lignin-derived aromatics into PHA promoted both lignin valorization and PHA biosynthesis. However, lignin's recalcitrance and heterogeneity pose significant challenges for its microbial degradation and value-added utilization. This review examines the entire pathway of lignin conversion into high-value products, highlighting the advantages of microbial processes for synthesizing PHA and promoting the biological upgrading of lignin. Additionally, synthetic biology techniques and metabolic regulation strategies can further enhance microbial PHA synthesis. Overall, integrating microbial PHA synthesis with lignin bioconversion not only facilitates lignin valorization but also supports the sustainable production of PHA, making a significant contribution to the utilization and sustainable development of biomass resources.
Collapse
Affiliation(s)
- Hai-Yuan Jia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology and Frontiers Science Center for Synthetic Biology, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University 301799, China
| | - Tao Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology and Frontiers Science Center for Synthetic Biology, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University 301799, China
| | - Chen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology and Frontiers Science Center for Synthetic Biology, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University 301799, China
| | - Hong-Wei Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology and Frontiers Science Center for Synthetic Biology, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University 301799, China
| | - Bing-Zhi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology and Frontiers Science Center for Synthetic Biology, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University 301799, China
| | - Ying-Jin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology and Frontiers Science Center for Synthetic Biology, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University 301799, China
| | - Zhi-Hua Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology and Frontiers Science Center for Synthetic Biology, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University 301799, China.
| |
Collapse
|
2
|
Ullah M, Ma F, Yu H, Sun S, Xie S. Aromatics valorization to polyhydroxyalkanoate by the ligninolytic bacteria isolated from soil sample. Int J Biol Macromol 2025; 306:141654. [PMID: 40032105 DOI: 10.1016/j.ijbiomac.2025.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Polyhydroxyalkanoates (PHA) are ecofriendly alternatives to conventional plastics due to their biodegradable nature. However, the high production cost limits their applications. Exploring novel bacteria with ligninolytic potential would be crucial to advance cost-effective PHA synthesis. The current study aims to unveil soil bacteria capable of aromatics valorization to PHA. Considering this, six aromatics resistance bacteria from a soil sample were isolated through culture acclimatization strategy and their growth was analyzed in various lignin model compounds. Ralstonia sp. BPSS-1 and Arthrobacter sp. BPSS-3 presented high-cell-densities in 4-hydroxybenzoic acid (4-HBA) and benzoate, respectively. Fluorescence microscopy confirmed the strains to be PHA positive and were subsequently evaluated for PHA synthesis from 4-HBA and benzoate at a concentration of 2 g L-1 in a nitrogen-limited M9 medium. However, applying a co-feeding strategy by the integration of 4-HBA and benzoate further increased the substrates consumption efficiency, biomass and PHA titer compared to single carbon sources. The maximum dry cell weight (DCW) and PHA yield by Ralstonia sp. BPSS-1 through the substrate co-feeding under optimized fermentation conditions was 0.69 ± 0.03, and 0.4 ± 0.02 g L-1, respectively. The draft genome analysis confirmed the genes involved in aromatic degradation. Besides, the proposed metabolic pathway was validated by studying the expression level of key genes, analyzing key intermediates and associated enzymes activities. The FTIR, 1H NMR and GC-MS determined the PHA functional group, chemical structure and monomers analysis, respectively. Overall, the current study highlighted the aromatic valorization potential of newly isolated PHA producing bacteria for sustainable biomanufacturing.
Collapse
Affiliation(s)
- Mati Ullah
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fuying Ma
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Yu
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Su Sun
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; College of Urban Construction, Wuchang Shouyi University, Wuhan 430064, China
| | - Shangxian Xie
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Han ZW, Wang HM, Chen X, Wu YC, Hou QX. Lignin reinforced eco-friendly and functional nanoarchitectonics materials with tailored interfacial barrier performance. J Colloid Interface Sci 2025; 684:735-757. [PMID: 39818034 DOI: 10.1016/j.jcis.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Exploring innovative and sustainable routes for the production of biodegradable biomass-based materials is critical to promote a circular carbon economy and carbon neutrality goals. Fossil-based non-biodegradable plastic waste poses a nonnegligible threat to humans and the ecological environment, and biomass-based functional materials are becoming increasingly viable alternatives. Lignin, a naturally occurring macromolecular polymer, is green and renewable resource rich in aromatic rings, with biodegradability, biocompatibility, and excellent processability for eco-friendly composites. Moreover, versatile and high tunable lignins can be valorized into functional materials, which are crucial building blocks in the fabrication of biomass-derived composites. Lignin's unique chemical structure, solvent resistance, anti-aging, and anti-ultraviolet functional properties make it highly potential for the fabrication of sustainable biobased barrier materials. This review systematically summarizes the progress in the fabrication and application of lignin-based functional composites, with a particular focus on barrier materials. First, the structural diversity of lignins from different sources and fractionation methods, and the structural modification strategies of lignins are briefly introduced. Then, the multiple barrier performances of lignin-based composites are listed, and the fabrication methods of different composites based on the polymer matrix systems are elaborated. In terms of diverse applications, this review highlights the multifaceted barrier properties of lignin-based composites in oxygen barrier, water vapor barrier, ultraviolet barrier, flame retardant and antibacterial applications. These functional barrier materials are widely used in food/pharmaceutical packaging, agricultural protection, construction, etc., providing an excellent option for sustainable materials with high barrier performance requirements. Finally, the main challenges faced by lignin-based barrier materials and the future directions are proposed.
Collapse
Affiliation(s)
- Zhong-Wei Han
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Han-Min Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Shanying International Holdings Co., Ltd., Maanshan 243021, China.
| | - Xu Chen
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu-Chun Wu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qing-Xi Hou
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Li D, Wang F, Zheng X, Zheng Y, Pan X, Li J, Ma X, Yin F, Wang Q. Lignocellulosic biomass as promising substrate for polyhydroxyalkanoate production: Advances and perspectives. Biotechnol Adv 2025; 79:108512. [PMID: 39742901 DOI: 10.1016/j.biotechadv.2024.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The depletion of fossil resources, coupled with global warming and adverse environmental impact of traditional petroleum-based plastics, have necessitated the discovery of renewable resources and innovative biodegradable materials. Lignocellulosic biomass (LB) emerges as a highly promising, sustainable and eco-friendly approach for accumulating polyhydroxyalkanoate (PHA), as it completely bypasses the problem of "competition for food". This sustainable and economically efficient feedstock has the potential to lower PHA production costs and facilitate its competitive commercialization, and support the principles of circular bioeconomy. LB predominantly comprises cellulose, hemicellulose, and lignin, which can be converted into high-quality substrates for PHA production by various means. Future efforts should focus on maximizing the value derived from LB. This review highlights the momentous and valuable research breakthroughs in recent years, showcasing the biosynthesis of PHA using low-cost LB as a potential feedstock. The metabolic mechanism and pathways of PHA synthesis by microbes, as well as the key enzymes involved, are summarized, offering insights into improving microbial production capacity and fermentation metabolic engineering. Life cycle assessment and techno-economic analysis for sustainable and economical PHA production are introduced. Technological hurdles such as LB pretreatment, and performance limitations are highlighted for their impact on enhancing the sustainable production and application of PHA. Meanwhile, the development direction of co-substrate fermentation of LB and with other carbon sources, integrated processes development, and co-production strategies were also proposed to reduce the cost of PHA and effectively valorize wastes.
Collapse
Affiliation(s)
- Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Fei Wang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xuening Zheng
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yingying Zheng
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaosen Pan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Jianing Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Fen Yin
- Engineering College, Qinghai Institute of Technology, Xining 810016, PR China.
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
5
|
Lee JM, Kim HB, Wang JJ, Zhou B, Seo DC, Park JH. Conversion of acidified lignin containing sulfur discharged from a biorefinery process into neutralized biochar: Characterization and metal adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176438. [PMID: 39307361 DOI: 10.1016/j.scitotenv.2024.176438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The objectives of this study were to produce biochars using sulfur-rich acidified lignin discharged from a biorefinery process and to evaluate their physicochemical properties and Pb adsorption capacity. As the pyrolysis temperature increased, the lignin acidified by the desulfurization process was converted to neutralized biochar (LBC), which exhibited high carbon content and stability. The carbon content of biochar manufactured at a pyrolysis temperature of 600 °C or higher was over 90 % and showed no significant difference, and their surface structures were found to be different, as revealed through XRD and FTIR analyses. The adsorption capacity of Pb by LBC increased with increasing pyrolysis temperature, and their adsorption capacity was well described by the pseudo-second-order model and the Langmuir isotherm adsorption model. In particular, the internal diffusion effect on the adsorption capacity of Pb was greater for LBC900 than for LBC600. In complex heavy metal solutions, LBC selectively exhibited high affinity for Pb, while the adsorption capacity of other metals was significantly reduced. The adsorption mechanism of Pb by LBC was verified through various analytical methods, and these results demonstrated that the adsorption of Pb by LBC was influenced by functional groups existing on the surface and inside of LBC and by some cation exchange.
Collapse
Affiliation(s)
- Jeong-Min Lee
- Department of Life Resources Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Hae-Been Kim
- Department of Life Resources Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Jim J Wang
- School of Plant, Environment & Soil Sciences, Louisiana State University AgCenter, Baton Rouge, LA 70803, USA
| | - Baoyue Zhou
- School of Plant, Environment & Soil Sciences, Louisiana State University AgCenter, Baton Rouge, LA 70803, USA
| | - Dong-Cheol Seo
- Division of Applied Life Science (BK21 Four) & Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| | - Jong-Hwan Park
- Department of Life Resources Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea.
| |
Collapse
|
6
|
Liu SC, Xin X, He ZJ, Xie ZH, Xie ZX, Liu ZH, Li BZ, Yuan YJ. Biological conversion of lignin-derived ferulic acid from wheat bran into vanillin. Int J Biol Macromol 2024; 281:136406. [PMID: 39389498 DOI: 10.1016/j.ijbiomac.2024.136406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Lignin is a promising feedstock for producing vanillin, one of the most extensively used flavor enhancers. However, the biotransformation performance of lignin derivatives into vanillin is still unsatisfactory. In this study, an efficient conversion strategy of lignin into vanillin was established by employing engineered Saccharomyces cerevisiae as a whole-cell biocatalyst. Optimization of cell culture media and whole-cell bioconversion improved the production efficiency of vanillin. The vanillin titer reached 15.3 mM with a molar yield of 71 % in fed-batch fermentation mode, while incorporating in-situ product separation, demonstrated a remarkable 2.6-fold increase. The whole-cell bioconversion, coupled with in-situ separation, successfully converted real lignin hydrolysate into a record vanillin titer of 21.1 mM, equivalent to 1.8 mg of vanillin per gram of wheat bran biomass. The whole-cell bioconversion process integrated in-situ product separation, represents a sustainable approach for vanillin production and offers a promising pathway for lignin valorization.
Collapse
Affiliation(s)
- Shi-Chang Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Xin Xin
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Zi-Jing He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Zi-Han Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Ze-Xiong Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| |
Collapse
|
7
|
He Z, Jiang G, Gan L, He T, Tian Y. Bacterial valorization of lignin for the sustainable production of value-added bioproducts. Int J Biol Macromol 2024; 279:135171. [PMID: 39214219 DOI: 10.1016/j.ijbiomac.2024.135171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
As the most abundant aromatic biopolymer in the biosphere, lignin represents a promising alternative feedstock for the industrial production of various value-added bioproducts with enhanced economical value. However, the large-scale implementation of lignin valorization remains challenging because of the heterogeneity and irregular structure of lignin. General fragmentation and depolymerization processes often yield various products, but these approaches necessitate tedious purification steps to isolate target products. Moreover, microbial biocatalytic processes, especially bacterial-based systems with high metabolic activity, can depolymerize and further utilize lignin in an eco-friendly way. Considering that wild bacterial strains have evolved several metabolic pathways and enzymatic systems for lignin degradation, substantial efforts have been made to exploit their potential for lignin valorization. This review summarizes recent advances in lignin valorization for the production of value-added bioproducts based on bacterial systems. Additionally, the remaining challenges and available strategies for lignin biodegradation processes and future trends of bacterial lignin valorization are discussed.
Collapse
Affiliation(s)
- Zhicheng He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Guangyang Jiang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, China
| | - Longzhan Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, China.
| |
Collapse
|
8
|
Costa P, Basaglia M, Casella S, Favaro L. Copolymers as a turning point for large scale polyhydroxyalkanoates applications. Int J Biol Macromol 2024; 275:133575. [PMID: 38960239 DOI: 10.1016/j.ijbiomac.2024.133575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Traditional plastics reshaped the society thanks to their brilliant properties and cut-price manufacturing costs. However, their protracted durability and limited recycling threaten the environment. Worthy alternatives seem to be polyhydroxyalkanoates, compostable biopolymers produced by several microbes. The most common 3-hydroxybutyrate homopolymer has limited applications calling for copolymers biosynthesis to enhance material properties. As a growing number of researches assess the discovery of novel comonomers, great endeavors are dedicated as well to copolymers production scale-up, where the choice of the microbial carbon source significantly affects the overall economic feasibility. Diving into novel metabolic pathways, engineered strains, and cutting-edge bioprocess strategies, this review aims to survey up-to-date publications about copolymers production, focusing primarily on precursors origins. Specifically, in the core of the review, copolymers precursors have been divided into three categories based on their economic value: the costliest structurally related ones, the structurally unrelated ones, and finally various low-cost waste streams. The combination of cheap biomasses, efficient pretreatment strategies, and robust microorganisms paths the way towards the development of versatile and circular polymers. Conceived to researchers and industries interested in tackling polyhydroxyalkanoates production, this review explores an angle often underestimated yet of prime importance: if PHAs copolymers offer advanced properties and sustainable end-of-life, the feedstock choice for their upstream becomes a major factor in the development of plastic substitutes.
Collapse
Affiliation(s)
- Paolo Costa
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Marina Basaglia
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Sergio Casella
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Lorenzo Favaro
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy; Department of Microbiology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa.
| |
Collapse
|
9
|
Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, Wang Y, Zhang F, Huo H. Bacterial transformation of lignin: key enzymes and high-value products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:2. [PMID: 38172947 PMCID: PMC10765951 DOI: 10.1186/s13068-023-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.
Collapse
Affiliation(s)
- Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China.
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun, 130117, China.
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China.
| |
Collapse
|
10
|
Liu SC, Shi T, He ZJ, Chen K, Liu ZH, Li BZ, Yuan YJ. Ethylenediamine pretreatment simultaneously improved carbohydrate hydrolysis and lignin valorization. BIORESOURCE TECHNOLOGY 2023; 386:129552. [PMID: 37499927 DOI: 10.1016/j.biortech.2023.129552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Lignocellulosic biomass (LCB) is the promising feedstock for value-added products, which would contribute to the bioeconomy and sustainable development. The efficient pretreatment is still required in the biorefinery of LCB. To make a simultaneous utilization of carbohydrates and lignin, a novel easy-recycled ethylenediamine (EDA) pretreatment was designed and evaluated in the present study. The results highlighted that this pretreatment yielded 96% glucose and 70% xylose in enzymatic hydrolysis. It simultaneously promoted the depolymerization of lignin into small molecules and functionalized the yielded lignin with Schiff base and amide structures. These animated-lignins showed a pH-responsive behavior and the excellent flocculation capacity by reducing more than 90% turbidity of kaolin suspensions. Therefore, easy-recycled EDA pretreatment hold the promise to simultaneously enhance the enzymatic hydrolysis of carbohydrates and endowed the new functionality of lignin toward downstream valorization, which improved the process feasibility and potentially enable the sustainability of LCB utilization.
Collapse
Affiliation(s)
- Shi-Chang Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Tao Shi
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Zi-Jing He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Kai Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| |
Collapse
|
11
|
Lan HN, Liu RY, Liu ZH, Li X, Li BZ, Yuan YJ. Biological valorization of lignin to flavonoids. Biotechnol Adv 2023; 64:108107. [PMID: 36758651 DOI: 10.1016/j.biotechadv.2023.108107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Lignin is the most affluent natural aromatic biopolymer on the earth, which is the promising renewable source for valuable products to promote the sustainability of biorefinery. Flavonoids are a class of plant polyphenolic secondary metabolites containing the benzene ring structure with various biological activities, which are largely applied in health food, pharmaceutical, and medical fields. Due to the aromatic similarity, microbial conversion of lignin derived aromatics to flavonoids could facilitate flavonoid biosynthesis and promote the lignin valorization. This review thereby prospects a novel valorization route of lignin to high-value natural products and demonstrates the potential advantages of microbial bioconversion of lignin to flavonoids. The biodegradation of lignin polymers is summarized to identify aromatic monomers as momentous precursors for flavonoid synthesis. The biosynthesis pathways of flavonoids in both plants and strains are introduced and compared. After that, the key branch points and important intermediates are clearly discussed in the biosynthesis pathways of flavonoids. Moreover, the most significant enzyme reactions including Claisen condensation, cyclization and hydroxylation are demonstrated in the biosynthesis pathways of flavonoids. Finally, current challenges and potential future strategies are also discussed for transforming lignin into various flavonoids. The holistic microbial conversion routes of lignin to flavonoids could make a sustainable production of flavonoids and improve the feasibility of lignin valorization.
Collapse
Affiliation(s)
- Hai-Na Lan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruo-Ying Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xia Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
12
|
Rodriguez A, Hirakawa MP, Geiselman GM, Tran-Gyamfi MB, Light YK, George A, Sale KL. Prospects for utilizing microbial consortia for lignin conversion. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1086881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Naturally occurring microbial communities are able to decompose lignocellulosic biomass through the concerted production of a myriad of enzymes that degrade its polymeric components and assimilate the resulting breakdown compounds by members of the community. This process includes the conversion of lignin, the most recalcitrant component of lignocellulosic biomass and historically the most difficult to valorize in the context of a biorefinery. Although several fundamental questions on microbial conversion of lignin remain unanswered, it is known that some fungi and bacteria produce enzymes to break, internalize, and assimilate lignin-derived molecules. The interest in developing efficient biological lignin conversion approaches has led to a better understanding of the types of enzymes and organisms that can act on different types of lignin structures, the depolymerized compounds that can be released, and the products that can be generated through microbial biosynthetic pathways. It has become clear that the discovery and implementation of native or engineered microbial consortia could be a powerful tool to facilitate conversion and valorization of this underutilized polymer. Here we review recent approaches that employ isolated or synthetic microbial communities for lignin conversion to bioproducts, including the development of methods for tracking and predicting the behavior of these consortia, the most significant challenges that have been identified, and the possibilities that remain to be explored in this field.
Collapse
|
13
|
González-González RB, Iqbal HM, Bilal M, Parra-Saldívar R. (Re)-thinking the bio-prospect of lignin biomass recycling to meet Sustainable Development Goals and circular economy aspects. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2022; 38:100699. [DOI: 10.1016/j.cogsc.2022.100699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
14
|
Haldar D, Dey P, Thomas J, Singhania RR, Patel AK. One pot bioprocessing in lignocellulosic biorefinery: A review. BIORESOURCE TECHNOLOGY 2022; 365:128180. [PMID: 36283673 DOI: 10.1016/j.biortech.2022.128180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Practically, high-yield conversion of biomass into value-added products at low cost is a primary goal for any lignocellulosic refinery. In the industrial context, the limitation in the practical adaptation of the conventional techniques practically involves multiple reactors for the conversion of biomass to bioproducts. Therefore, the present manuscript critically reviewed the advancements in one-pot reaction systems with a major focus on the scientific production of value-added products from lignocellulosic biomass. In view of that, the novelty of one-pot reactions is shown during the fractionation of biomass into their individual constituents. The importance of the direct conversion of cellulose and lignin into a range of valuable products including organic acids and platform chemicals are separately discussed. Finally, the article is concluded with the opportunities, existing troubles, and possible solutions to overcome the challenges in lignocellulosic biorefinery. This article will assist the readers to identify the economic-friendly-one-pot conversion of lignocellulosic biomass.
Collapse
Affiliation(s)
- Dibyajyoti Haldar
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
| | - Pinaki Dey
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Jibu Thomas
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226029, India
| | - Anil Kumar Patel
- Centre for Energy and Environmental Sustainability, Lucknow 226029, India; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
15
|
Chen K, He ZJ, Liu ZH, Ragauskas AJ, Li BZ, Yuan YJ. Emerging Modification Technologies of Lignin-based Activated Carbon toward Advanced Applications. CHEMSUSCHEM 2022; 15:e202201284. [PMID: 36094056 DOI: 10.1002/cssc.202201284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Lignin-based activated carbon (LAC) is a promising high-quality functional material due to high surface area, abundant porous structure, and various functional groups. Modification is the most important step to functionalize LAC by altering its porous and chemical properties. This Review summarizes the state-of-the-art modification technologies of LAC toward advanced applications. Promising modification approaches are reviewed to display their effects on the preparation of LAC. The multiscale changes in the porosity and the surface chemistry of LAC are fully discussed. Advanced applications are then introduced to show the potential of LAC for supercapacitor electrode, catalyst support, hydrogen storage, and carbon dioxide capture. Finally, the mechanistic structure-function relationships of LAC are elaborated. These results highlight that modification technologies play a special role in altering the properties and defining the functionalities of LAC, which could be a promising porous carbon material toward industrial applications.
Collapse
Affiliation(s)
- Kai Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zi-Jing He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, 37996 TN, USA
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, 37996 TN, USA
- Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37830 TN, USA
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
16
|
Mohammad SH, Bhukya B. Biotransformation of toxic lignin and aromatic compounds of lignocellulosic feedstock into eco-friendly biopolymers by Pseudomonas putida KT2440. BIORESOURCE TECHNOLOGY 2022; 363:128001. [PMID: 36150429 DOI: 10.1016/j.biortech.2022.128001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Lignin and its derivatives are the most neglected compounds in bio-processing industry due to their toxic and recalcitrant nature. Considering this, the present study aimed at valorizing these toxic compounds by employing Pseudomonas putida KT2440. Acclimatization resulted in improved tolerance with considerable lag phase reduction and aromatics degradation. Glucose as co-substrate enhanced growth and degradation in the toxic environment. The strain was able to degrade 30 % (1.60 g·L-1) lignin, 45 mM benzoate, 40 mM p-coumarate, 35 mM ferulate, 10 mM phenol, 10 mM pyrocatechol and 8 mM aromatics mixture. The strain synthesized biopolymers using these compounds under feast and famine conditions. Characterization using GC-MS, FT-IR, H1 NMR revealed them to be Polyhydroxyalkanoate (PHA) heteropolymers. All the analyzed PHAs contained versatile monomers with Hexadecanoic acid being the major one. This is a novel attempt towards lignin and aromatics degradation coupled with biopolymers synthesis without any genetic manipulation of the strain.
Collapse
Affiliation(s)
- Saddam Hussain Mohammad
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad 500007, Telangana State, India
| | - Bhima Bhukya
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad 500007, Telangana State, India.
| |
Collapse
|