1
|
Yang Y, Ma X, Wang M, Ji X, Li L, Liu Z, Wang J, Ren Y, Jia L. Mild γ-Butyrolactone/Water Pretreatment for Highly Efficient Sugar Production from Corn Stover. Appl Biochem Biotechnol 2024; 196:7464-7475. [PMID: 38589715 DOI: 10.1007/s12010-024-04922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
In this study, γ-butyrolactone/water (GBL/H2O) was explored as a mild, efficient, and cost-effective binary solvent pretreatment to enhance hydrolyzability of corn stover (CS). Key pretreatment parameters-reaction time, temperature, and H2SO4 concentration-were systematically investigated for their effects on the physicochemical properties of CS. Specifically, increased temperature and acid concentration significantly decreased cellulose crystallinity (from 1.39 for untreated CS to 1.04 for CS pretreated by GBL/H2O with 100 mM H2SO4 at 120 °C for 1 h) and promoted lignin removal (47.3% for CS pretreated by GBL/H2O with 150 mM H2SO4 at 120 °C for 1 h). Acknowledging the cellulase's limited hydrolysis efficiency, a dual-enzyme scheme using a low cellulase dosage (10 FPU/g) supplemented with β-glucosidase or xylanase was tested, enhancing hydrolysis of CS pretreated under low temperature-long duration and high temperature-short duration conditions, respectively. Optimum sugar release was obtained from CS pretreated with GBL/H2O and 150 mM H2SO4 at 120 °C for 1 h, achieving 98% glucan and 82.3% xylan conversion, compared with 53.9% and 17% of glucan and xylan conversion from untreated CS. GBL/H2O pretreatment outperformed other binary systems in literature, achieving the highest sugar conversions with lower enzyme loading. These results highlight the potential of GBL/H2O pretreatment for efficient biomass conversion, contributing to the goals of the green economy.
Collapse
Affiliation(s)
- Yu Yang
- College of Forestry, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Xueliang Ma
- College of Forestry, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Manzhu Wang
- College of Forestry, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Xinyi Ji
- College of Forestry, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Ziyu Liu
- College of Forestry, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Jiangyao Wang
- College of Forestry, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Yujin Ren
- College of Forestry, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Lili Jia
- College of Forestry, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China.
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Feng J, Techapun C, Phimolsiripol Y, Phongthai S, Khemacheewakul J, Taesuwan S, Mahakuntha C, Porninta K, Htike SL, Kumar A, Nunta R, Sommanee S, Leksawasdi N. Utilization of agricultural wastes for co-production of xylitol, ethanol, and phenylacetylcarbinol: A review. BIORESOURCE TECHNOLOGY 2024; 392:129926. [PMID: 37925084 DOI: 10.1016/j.biortech.2023.129926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Corn, rice, wheat, and sugar are major sources of food calories consumption thus the massive agricultural waste (AW) is generated through agricultural and agro-industrial processing of these raw materials. Biological conversion is one of the most sustainable AW management technologies. The abundant supply and special structural composition of cellulose, hemicellulose, and lignin could provide great potential for waste biological conversion. Conversion of hemicellulose to xylitol, cellulose to ethanol, and utilization of remnant whole cells biomass to synthesize phenylacetylcarbinol (PAC) are strategies that are both eco-friendly and economically feasible. This co-production strategy includes essential steps: saccharification, detoxification, cultivation, and biotransformation. In this review, the implemented technologies on each unit step are described, the effectiveness, economic feasibility, technical procedures, and environmental impact are summarized, compared, and evaluated from an industrial scale viewpoint.
Collapse
Affiliation(s)
- Juan Feng
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Charin Techapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Yuthana Phimolsiripol
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Suphat Phongthai
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Julaluk Khemacheewakul
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Siraphat Taesuwan
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chatchadaporn Mahakuntha
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Krisadaporn Porninta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Su Lwin Htike
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Anbarasu Kumar
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Department of Biotechnology, Periyar Maniammai Institute of Science & Technology, Thanjavur 613403, India.
| | - Rojarej Nunta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang 52100, Thailand
| | - Sumeth Sommanee
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Noppol Leksawasdi
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
3
|
Orientated inhibition of humin formation in efficient production of levulinic acid from cellulose with high substrate loading: Synergistic role of additives. Carbohydr Polym 2023; 309:120692. [PMID: 36906373 DOI: 10.1016/j.carbpol.2023.120692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
The main bottleneck in the direct conversion of cellulose to levulinic acid (LA), a promising bio-based platform chemical, lies in the severe formation of humins, especially at high substrate loading (>10 wt%). Herein, we report an efficient catalytic system consisting of a 2-methyltetrahydrofuran/water (MTHF/H2O) biphasic solvent with NaCl and cetyltrimethylammonium bromide (CTAB) as additives for converting cellulose (15 wt%) to LA in the presence of a benzenesulfonic acid catalyst. We show that both NaCl and CTAB accelerated the depolymerization of cellulose and formation of LA. However, NaCl favored the humin formation via degradative condensations, whereas CTAB inhibited humin formation by restraining the routes of both degradative and dehydrated condensations. A synergistic role of NaCl and CTAB on suppressing humin formations is illustrated. The combined use of NaCl and CTAB led to an increased LA yield (60.8 mol%) from microcrystalline cellulose in MTHF/H2O (VMTHF/VH2O = 2/1) at 453 K for 2 h. Moreover, it was efficient for converting cellulose fractioned from several kinds of lignocellulosic biomass, wherein a high LA yield of 81.0 mol% was achieved from wheat straw cellulose. This work presents a new strategy for advancing LA biorefinery by synergistically promoting cellulose depolymerization with orientated inhibition of undesired humin formation.
Collapse
|
4
|
Yang Q, Tang W, Li L, Huang M, Ma C, He YC. Enhancing enzymatic hydrolysis of waste sunflower straw by clean hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2023:129236. [PMID: 37244309 DOI: 10.1016/j.biortech.2023.129236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Hydrothermal pretreatment is an effective way to change the lignocellulose structure and improve its saccharification. An efficient hydrothermal pretreatment of sunflower straw was conducted when the severity factor (LogR0) was 4.1. 60.4% of xylan and 36.5% of lignin were removed at 180 ℃ for 120 minutes with a solid-to-liquid ratio of 1:15. A series of characterizations (such as X-ray diffraction, Fourier Transform infrared spectroscopy, scanning electron microscopy, chemical component analysis, cellulase accessibility) proved that hydrothermal pretreatment destroyed sunflower straw surface structure, enlarged its pores, and enhanced the accessibility to cellulase (371.2 mg/g). After the enzymatic saccharification of treated sunflower straw for 72 h, 68.0% yield of reducing sugar and 61.8% yield of glucose were achieved, and 4.0 g/L xylo-oligosaccharide was obtained in the filtrate. Overall, this easy-to-operate and green hydrothermal pretreatment could effectively destroy the surface barrier of lignocellulose, help remove lignin and xylan, and increase the enzymatic hydrolysis efficiency.
Collapse
Affiliation(s)
- Qizhen Yang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Wei Tang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Lei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China
| | - Menghan Huang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China
| | - Yu-Cai He
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
5
|
Qin D, Liu Y, Yang R, Li J, Hu C. Complete Low-Temperature Transformation and Dissolution of the Three Main Components in Corn Straw. ChemistryOpen 2023; 12:e202200247. [PMID: 36722831 PMCID: PMC9891121 DOI: 10.1002/open.202200247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Indexed: 02/02/2023] Open
Abstract
The conversion of biomass faces the challenge of mass and heat transfer, as well as the exertion of heterogeneous catalyst, because raw biomass exists usually in solid state. In this work, the simultaneous transformation and dissolution of the three main components (hemicellulose, cellulose, lignin) in corn straw were achieved in ethanol/ valerolactone (GVL)/H2 O (10 : 10 : 40, v/v/v) co-solvent system. With the assistance of AlCl3 ⋅ 6H2 O, the conversion of hemicellulose, lignin and cellulose was >96 % at 170 °C. The conversion of solid biomass into fluid, overcoming the mass transfer restrictions between solid biomass and solid catalysts, provides new raw materials to further upgrading. H2 O could penetrate inside the crystalline cellulose to swell even dissolve it, while ethanol and GVL acted as media to dissolve especially the G unit in lignin. The H+ derived from AlCl3 ⋅ 6H2 O hydrolysis could break the linkages of lignin-hemicellulose and glycosidic bond in saccharides, and aluminum chloride promoted the next degradation of polysaccharides to small molecules. Consequently, as high as 33.2 % yield of levulinic acid and 42.2 % yield of furfural were obtained. The cleavage of β-O-4 and Cβ -Cγ bonds in lignin produced large amounts of lignin-derived dimers and trimers. The total yield of monomeric phenols is up to 8 %.
Collapse
Affiliation(s)
- Diyan Qin
- Key Laboratory of Green Chemistry and Technology Ministry of Education College of ChemistrySichuan University ChengduSichuan610064P. R. China
| | - Yancheng Liu
- Key Laboratory of Green Chemistry and Technology Ministry of Education College of ChemistrySichuan University ChengduSichuan610064P. R. China
| | - Ruofeng Yang
- Key Laboratory of Green Chemistry and Technology Ministry of Education College of ChemistrySichuan University ChengduSichuan610064P. R. China
| | - Jianmei Li
- Key Laboratory of Green Chemistry and Technology Ministry of Education College of ChemistrySichuan University ChengduSichuan610064P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology Ministry of Education College of ChemistrySichuan University ChengduSichuan610064P. R. China
| |
Collapse
|
6
|
Rabelo SC, Nakasu PYS, Scopel E, Araújo MF, Cardoso LH, Costa ACD. Organosolv pretreatment for biorefineries: Current status, perspectives, and challenges. BIORESOURCE TECHNOLOGY 2023; 369:128331. [PMID: 36403910 DOI: 10.1016/j.biortech.2022.128331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Biorefineries integrate processes for the sustainable conversion of biomass into chemicals, materials, and bioenergy so that resources are optimized and effluents are minimized. Despite the vast potential of lignocellulosic biorefineries, their success depends heavily on effective, economically viable, and sustainable biomass fractionation. Although efficient, organosolv pretreatment still faces challenges that must be overcome for its widespread utilization, mainly related to solvent type and recycling, robustness regarding biomass type and integration of hemicellulose recovery and use. This review shows the recent advances and state-of-the-art of organosolv pretreatment, discussing the advances, such as the use of biobased solvents, whilst also shedding light on the perspectives of using the streams - cellulose, hemicellulose, and lignin - to produce biofuels and products of high added value. In addition, it presents an overview of the existing industrial implementations of organosolv processes and, lastly, shows the main scientific and industrial challenges and opportunities for this process.
Collapse
Affiliation(s)
- Sarita Cândida Rabelo
- School of Agriculture, São Paulo State University (Unesp), Botucatu Campus, Botucatu, São Paulo, Brazil.
| | | | - Eupídio Scopel
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | | | - Luiz Henrique Cardoso
- School of Agriculture, São Paulo State University (Unesp), Botucatu Campus, Botucatu, São Paulo, Brazil; Institute of Biosciences, São Paulo State University (Unesp), Botucatu Campus, Botucatu, São Paulo, Brazil
| | - Aline Carvalho da Costa
- Chemical Engineering School in State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Sun C, Song G, Pan Z, Tu M, Kharaziha M, Zhang X, Show PL, Sun F. Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 368:128356. [PMID: 36414144 DOI: 10.1016/j.biortech.2022.128356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The valorization of organosolv pretreatment (OP) is a required approach to the industrialization of the current enzyme-mediated lignocellulosic biorefinery. Recent literature has demonstrated that the solvolysis happening in the OP can modify the soluble components into value-added active compounds, namely organosolv modified lignin (OML) and organosolv modified sugars (OMSs), in addition to protecting them against excessive degradation. Among them, the OML is coincidental with the "lignin-first" strategy that should render a highly reactive lignin enriched with β-O-4 linkages and less condensed structure by organosolv grafting, which is desirable for the transformation into phenolic compounds. The OMSs are valuable glycosidic compounds mainly synthesized by trans-glycosylation, which can find potential applications in cosmetics, foods, and healthcare. Therefore, a state-of-the-art OP holds a big promise of lowering the process cost by the valorization of these active compounds. Recent advances in organosolv modified components are reviewed, and perspectives are made for addressing future challenges.
Collapse
Affiliation(s)
- Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenying Pan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Maobing Tu
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500 Semenyih, Malaysia
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Liu X, Cheng J, Huang C, Wang J, Fang G, Shen K, Meng X, Ragauskas AJ. Alkali-facilitated deep eutectic solvent for effective bamboo saccharification. BIORESOURCE TECHNOLOGY 2023; 367:128297. [PMID: 36370941 DOI: 10.1016/j.biortech.2022.128297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Herein, a Na2S promoted deep eutectic solvent (DES) was established to reduce the natural recalcitrance of moso bamboo (MB) and improve the subsequent enzymatic saccharification. It was found that the addition of Na2S (Choline chloride/Ethylene glycol/Na2S) dramatically promoted the deconstructions of lignin with highest removal of 74.67 %, but at the same time preserved glucan and hemicellulose to the maximum extent. With the fractionation, the enzymatic saccharification yield of pretreated MB can reach 100 % under the pretreatment condition of 140 °C, and lignin could be readily recovered with a high yield of 81.47 %. The proposed DES is superior to normal alkaline DES in terms of the higher lignin removal and recovery yield, carbohydrate preservation and enzymatic digestibility, which indicated Na2S as a novel and powerful reinforcer enhancing the DES fractionation efficiency.
Collapse
Affiliation(s)
- Xuze Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Jinyuan Cheng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China.
| | - Jia Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Kuizhong Shen
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
9
|
Current Challenges and Perspectives for the Catalytic Pyrolysis of Lignocellulosic Biomass to High-Value Products. Catalysts 2022. [DOI: 10.3390/catal12121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lignocellulosic biomass is an excellent alternative of fossil source because it is low-cost, plentiful and environmentally friendly, and it can be transformed into biogas, bio-oil and biochar through pyrolysis; thereby, the three types of pyrolytic products can be upgraded or improved to satisfy the standard of biofuel, chemicals and energy materials for industries. The bio-oil derived from direct pyrolysis shows some disadvantages: high contents of oxygenates, water and acids, easy-aging and so forth, which restrict the large-scale application and commercialization of bio-oil. Catalytic pyrolysis favors the refinement of bio-oil through deoxygenation, cracking, decarboxylation, decarbonylation reactions and so on, which could occur on the specified reaction sites. Therefore, the catalytic pyrolysis of lignocellulosic biomass is a promising approach for the production of high quality and renewable biofuels. This review gives information about the factors which might determine the catalytic pyrolysis output, including the properties of biomass, operational parameters of catalytic pyrolysis and different types of pyrolysis equipment. Catalysts used in recent research studies aiming to explore the catalytic pyrolysis conversion of biomass to high quality bio-oil or chemicals are discussed, and the current challenges and future perspectives for biomass catalytic pyrolysis are highlighted for further comprehension.
Collapse
|
10
|
Chen X, Zheng X, Pei Y, Chen W, Lin Q, Huang J, Hou P, Tang J, Han W. Process design and techno-economic analysis of fuel ethanol production from food waste by enzymatic hydrolysis and fermentation. BIORESOURCE TECHNOLOGY 2022; 363:127882. [PMID: 36067898 DOI: 10.1016/j.biortech.2022.127882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, fuel ethanol production from food waste using enzymatic hydrolysis and fermentation was evaluated from techno-economic viewpoint. The plant was designed with a capacity of 10 t/d food waste and a lifetime of 15-year. The total capital cost, annual operation cost and annual net profits of the plant were US$ 367,552, US$ 155,959 and US$ 74,995.57, respectively. The plant was economically viable as long as the internal rate of return remained below 29.8%. The shortest payback time was 5 years with discount rate of 5%. The price of fuel ethanol and food waste treatment fee were the most important variables for the economic performance of the plant by sensitivity analysis. This work could provide the basic knowledge for techno-economic analysis of food waste treatment and promote the industrial production of fuel ethanol.
Collapse
Affiliation(s)
- Xikai Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xietian Zheng
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yanbo Pei
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weikun Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qiang Lin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Pingzhi Hou
- School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Junhong Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wei Han
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|