1
|
Cui S, Ji S, Zhao W, Wan L, Li YY. Stoichiometric analysis and control strategy of partial nitrification for treating dewatering liquid from food-waste methane fermentation. WATER RESEARCH 2025; 276:123255. [PMID: 39955789 DOI: 10.1016/j.watres.2025.123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Methane fermentation is critical for food-waste management; however, effective treatment of its high-ammonium dewatering liquid remains a major challenge. Anammox, a promising candidate for liquid treatment, requires effective pretreatment, such as partial nitrification (PN), to reduce ammonium and generate sufficient nitrite to optimize efficiency. In this study, an airlift reactor was employed to process the dewatering liquid from food-waste methane fermentation. Stable operation for over 360 days demonstrated its feasibility under high-load conditions. By implementing precise aeration control strategy to stabilize the ammonium removal efficiency (ARE = 50.2-57.1 %), a detailed summary of the optimal operational parameter ranges (consumed inorganic carbon [ΔIC] 1000-1160 mg C/L, effluent [Eff.] IC 282-378 mg C/L, pH 8.05-8.17, Eff. Alkalinity 1000-1350 mg CaCO3/L, free ammonia 61.9-82.5 mg/L, and free nitrous acid 47.6-71.1 μg/L) were provided under the ideal NO2⁻/NH4⁺ ratio of 1.1-1.3. Additionally, variations in ammonium oxidizing bacteria activity with temperature and pH were analyzed by the Arrhenius, cardinal temperature model with inflection, and Haldane models, with R2 values of 0.998, 0.975, and 0.999, respectively. Results suggest that the optimal conditions for partial nitrification were identified as a temperature range of 20-40 °C and a pH range of 7.5-8.5. Microbial sequencing reveals Nitrosomonas markedly enriched during operation, with its abundance rising from 3.67 % to 9.76 % as the NLR increased. Notably, NOB was nearly undetectable throughout the entire process. Additionally, an advanced aeration-based control mechanism with a positive feedback loop were proposed, which allows the airlift PN reactor to effectively treat high-ammonia dewatering liquid, thereby providing a suitable influent for subsequent anammox and offering crucial theoretical insights for future controlling pilot-scale system operation.
Collapse
Affiliation(s)
- Shen Cui
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Shenghao Ji
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Wenzhao Zhao
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Liguo Wan
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; School of Municipal and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, Jilin, , PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
2
|
Zou J, Lü F, Chen L, Zhang H, He P. Machine learning for enhancing prediction of biogas production and building a VFA/ALK soft sensor in full-scale dry anaerobic digestion of kitchen food waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123190. [PMID: 39504672 DOI: 10.1016/j.jenvman.2024.123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Based on operational data collected over 1.5 years from four full-scale dry anaerobic digesters used for kitchen food waste treatment, this study adopted eight typical machine learning algorithms to distinguish the best biogas prediction model and to develop a soft sensor based on the VFA/ALK ratio. Among all the eight tested models, the CatBoost (CB) algorithm demonstrated superior performance in terms of prediction accuracy and model fitting. Specifically, the CB model achieved a biogas production prediction accuracy (R2) ranging from 0.604 to 0.915, and a VFA/ALK R2 between 0.618 and 0.768 on the test dataset. Furthermore, the feature importance analysis revealed that biomass amount into the dry anaerobic digester was the primary factor influencing biogas production. Chemical oxygen demand (COD) and free ammonia nitrogen (FAN) were identified as the most significant factors impacting the VFA/ALK indicator during dry anaerobic digestion, collectively contributing to nearly 50% of the influence. Overall, this study verifies the feasibility of using machine learning to predict biogas production in full-scale dry anaerobic digestion and provides a crucial foundation for monitoring the stability of dry anaerobic digesters.
Collapse
Affiliation(s)
- Jinlin Zou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, PR China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Long Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Pinjing He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
3
|
Sobhi M, Elsamahy T, Zhang Y, Zakaria E, Ren S, Gaballah MS, Zhu F, Hu X, Cui Y, Huo S. Adaptation of Chlorella vulgaris immobilization on rice straw with liquid manure to create a sustainable feedstock for biogas production and potential feed applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123050. [PMID: 39447360 DOI: 10.1016/j.jenvman.2024.123050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Rice straw (RS) is a widely available agricultural residue with significant potential for biogas production and feed applications; however, its poor digestibility and nutritional value limit its utilization. This study explores an innovative approach to enhance the digestibility and nutritional value of RS by cultivating Chlorella vulgaris through immobilization technology on RS, using liquid manure (LM) as an alternative to the traditional BG11 medium. The results showed an increase in chlorophyll a (Chl a) after 12 days for both the BG11 medium and LM-based treatments, from 0.13 to 0.34 and 0.24 mg Chl a/g product (DM), respectively. Additionally, the immobilized microalgal biomass increased to 284.18 and 170.14 mg algal biomass/g product (DM), respectively. Soaking under microaerobic conditions during cultivation led to the partial degradation of RS. This, combined with the formed microalgal biofilm, contributed to an improved digestibility of the dry matter, reaching 69.1% and 65.9% for the final products based on the BG11 medium and LM mediums, respectively, compared to 52.1% for the raw RS. Furthermore, the crude protein and lipids contents were significantly improved with the potential for applications in feed, reaching 21.4% and 4.1% for the BG11 medium-based product, while they were observed to be 12.8% and 3.0%, respectively, for the LM-based product. Additionally, carbon-to-nitrogen ratio was significantly reduced compared to the raw RS. The higher digestibility and improved nutritional value contributed to increased biogas production, reaching 129.3 and 118.7 mL/g (TS) for the products based on the traditional medium and LM medium, respectively, compared to 86.7 mL/g (TS) for the raw RS. The immobilization mechanism and biofilm development could be attributed to the roughness of the RS and extracellular polymer substances. This study demonstrates that integrating C. vulgaris cultivation on RS with LM as a nutrient source not only enhances the digestibility and nutritional value of RS but also offers a sustainable waste management solution with potential applications in biogas production and animal feed.
Collapse
Affiliation(s)
- Mostafa Sobhi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yajie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Eman Zakaria
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Siyuan Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mohamed S Gaballah
- School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48858, USA
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Wu LJ, Li XX, Yang F, Lyu YK. Thermophilic and mesophilic digestion of high-solid oily food waste: How to ensure long-term and stable continuous operation? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121973. [PMID: 39067336 DOI: 10.1016/j.jenvman.2024.121973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Commonly high lipid in food waste confronts anaerobic digestion with improved energy production and also inhibition risk from the intermediate long chain fatty acids (LCFAs). Combined with operation challenges from anaerobic digestion of food waste itself, coping strategies are necessitated to ensure stable operation for oily food waste (OFW). A parallel thermophilic (TD) and mesophilic digestion (MD) of high-solid OFW was conducted and operated continuously for a long term. It was clarified that challenges were mainly from acidification, trace metal deficiency and LCFA inhibition. Acidification resulted in an abrupt pH decline to even below 6.00, and over 75% drop of biogas production rate. In addition to the requirements of saturated strong alkali to maintain an appropriate range, supplementation of trace metals were proven effective in counteracting the sharp decrease of biogas production rate. The TD was observed more competent in coping with the acidification than the MD, while the TD needed more supplementation of trace metals at approximately 0.10 mg Fe/g chemical oxygen demand (COD)added, 0.01 mg Co/g CODadded and 0.01 mg Ni/g CODadded. The TD was more adaptable in LCFA conversion due to the stronger ability of overcoming the palmitic acid (C16:0) accumulation. The MD experienced a prolonged recovery period owing to LCFA inhibition shortly after acidification. Similar operation performance was ultimately achieved for the TD and MD by the counteractions, with a methane yield and volatile solids (VS) removal efficiency at about 0.60 L/g VSadded and 75.0%, respectively. In summary, combined pH control and trace metal supplementation, and prevention and recovery of LCFA inhibition were necessary for the stability insurance of a long-term continuous digestion of oily food waste.
Collapse
Affiliation(s)
- Li-Jie Wu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China.
| | - Xiao-Xiao Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Fan Yang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Yong-Kang Lyu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| |
Collapse
|
5
|
Liu Y, Xi Y, Li Q, Dzakpasu M, Chen R, Li YY. Biokinetic and microbial insights into regulatory mechanisms of long-chain fatty acid degradation during food waste-lipid co-digestion within anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2024; 408:131223. [PMID: 39111402 DOI: 10.1016/j.biortech.2024.131223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
This study investigated the effects of varying lipid ratios on the anaerobic co-digestion of high-lipid food waste (FW) in a mesophilic anaerobic membrane bioreactor (AnMBR). At a lipid concentration of 5 %, optimal biogas production (3.84 L/L/d) and lipid removal efficiency (78 %) were achieved; however, increasing lipid concentrations resulted in significant accumulations of long-chain fatty acids (LCFAs) and volatile fatty acids (VFAs). Batch tests further demonstrated the impact of various types of LCFAs, with stearic acid showing the slowest microbial growth rate (0.033d-1), confirming its role in the accumulation of acetate-dominated VFAs, potentially limiting the methanogenesis process at elevated lipid levels. Furthermore, at 8 % lipid content, the downregulation of key LCFA degradation enzymes and dominance of hydrogenotrophic methanogens indicated adverse conditions. The importance of the intricate interplay between LCFA degradation kinetics and microbial community for the system efficiency was evidenced, offering insights for optimizing and managing high-lipidic wastes.
Collapse
Affiliation(s)
- Yaqian Liu
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi, 980-8579, Japan
| | - Yu Xi
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi, 980-8579, Japan.
| | - Mawuli Dzakpasu
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi, 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi, 980-8579, Japan
| |
Collapse
|
6
|
Wu ZF, Li ZL, Liu QH, Yang ZM. Magnetite-boosted syntrophic conversion of acetate to methane during thermophilic anaerobic digestion. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:160-169. [PMID: 38214992 PMCID: wst_2023_421 DOI: 10.2166/wst.2023.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Using a batch thermophilic anaerobic system established with 60 mL serum bottles, the mechanism on how microbial enrichments obtained from magnetite-amended paddy soil via repeated batch cultivation affected methane production from acetate was investigated. Magnetite-amended enrichments (MAEs) can improve the methane production rate rather than the methane yield. Compared with magnetite-unamended enrichments, the methane production rate in MAE was improved by 50%, concomitant with the pronounced electrochemical response, high electron transfer capacity, and fast acetate degradation. The promoting effects might be ascribed to direct interspecies electron transfer facilitated by magnetite, where magnetite might function as electron conduits to link the acetate oxidizers (Anaerolineaceae and Peptococcaceae) with methanogens (Methanosarcinaceae). The findings demonstrated the potential application of MAE for boosting methanogenic performance during thermophilic anaerobic digestion.
Collapse
Affiliation(s)
- Zi-Fan Wu
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Science, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China; These authors contributed equally to this work. E-mail:
| | - Zhao-Long Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; These authors contributed equally to this work
| | - Qing-Hua Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Man Yang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Science, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China
| |
Collapse
|
7
|
Yuan T, Shi X, Xu Q. Enhancing methane production from food waste with iron-carbon micro-electrolysis in a two-stage process. BIORESOURCE TECHNOLOGY 2023; 385:129474. [PMID: 37429555 DOI: 10.1016/j.biortech.2023.129474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
A two-stage process, consisting of a leach-bed reactor (LBR) and an up-flow anaerobic sludge blanket reactor (UASB), has been commonly adopted to improve food waste anaerobic digestion. However, its application is limited due to low hydrolysis and methanogenesis efficiencies. This study proposed a strategy of incorporating iron-carbon micro-electrolysis (ICME) into the UASB and recirculating its effluent to the LBR to improve the two-stage process efficiency. Results showed that the integration of the ICME with the UASB significantly increased the CH4 yield by 168.29%. The improvement of the food waste hydrolysis in the LBR mainly contributed to the enhanced CH4 yield (approximately 94.5%). The enrichment of hydrolytic-acidogenic bacterial activity, facilitated by the Fe2+ generated through ICME, might be the primary cause of the improved food waste hydrolysis. Moreover, ICME enriched the growth of hydrogenotrophic methanogens and stimulated the hydrogenotrophic methanogenesis pathway in the UASB, contributing partially to the enhanced CH4 yield.
Collapse
Affiliation(s)
- Tugui Yuan
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaoyu Shi
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
8
|
Zhang L, Chen Z, Zhu S, Li S, Wei C. Effects of biochar on anaerobic treatment systems: Some perspectives. BIORESOURCE TECHNOLOGY 2023; 367:128226. [PMID: 36328170 DOI: 10.1016/j.biortech.2022.128226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Many anaerobic activities involve carbon, nitrogen, iron, and sulfur cycles. As a well-developed porous material with abundant functional groups, pyrolytic biochar has been widely researched in efforts to promote microbial activities. However, the lack of consensus on the biochar mechanism has limited its practical application. This review summarizes the effects of different pyrolysis temperatures, particle sizes, and dosages of biochar on microbial activities and community in Fe(III) reduction, anaerobic digestion, nitrogen removal, and sulfate reduction systems. It was found that biochar could promote anaerobic activities by stimulating electron transfer, alleviating toxicity, and providing suitable habitats for microbes. However, it inhibits microbial activities by releasing heavy metal ions or persistent free radicals and adsorbing signaling molecules. Finding a balance between the promotion and inhibition of biochar is therefore essential. This review provides valuable perspectives on how to achieve efficient and stable use of biochar in anaerobic systems.
Collapse
Affiliation(s)
- Liqiu Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Zhuokun Chen
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shugeng Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Chunhai Wei
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|