1
|
Yu BS, Pyo S, Lee J, Han K. Microalgae: a multifaceted catalyst for sustainable solutions in renewable energy, food security, and environmental management. Microb Cell Fact 2024; 23:308. [PMID: 39543605 PMCID: PMC11566087 DOI: 10.1186/s12934-024-02588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
This review comprehensively examines the various applications of microalgae, focusing on their significant potential in producing biodiesel and hydrogen, serving as sustainable food sources, and their efficacy in treating both municipal and food-related wastewater. While previous studies have mainly focused on specific applications of microalgae, such as biofuel production or wastewater treatment, this review covers these applications comprehensively. It examines the potential for microalgae to be applied in various industrial sectors such as energy, food security, and environmental management. By bridging these different application areas, this review differs from previous studies in providing an integrated and multifaceted view of the industrial applications of microalgae. Since it is essential to increase the productivity of the process to utilize microalgae for various industrial applications, research trends in different microalgae cultivation processes, including the culture system (e.g., open ponds, closed ponds) or environmental conditions (e.g., pH, temperature, light intensity) to improve the productivity of biomass and valuable substances was firstly analyzed. In addition, microalgae cultivation technologies that can maximize the biomass and valuable substances productivity while limiting the potential for contamination that can occur when utilizing these systems have been described to maximize CO2 reduction. In conclusion, this review has provided a detailed analysis of current research findings and technological innovations, highlighting the important role of microalgae in addressing global challenges related to energy, food supply, and waste management. It has also provided valuable insights into future research directions and potential commercial applications in several bio-related industries, and illustrated how important continued exploration and development in this area is to realize the full potential of microalgae.
Collapse
Affiliation(s)
- Byung Sun Yu
- Department of biomedical Sciences, College of Bio-convergence, Dankook University, 31116, Dandae-ro 119, Dongnam-gu, Cheonan, 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seonju Pyo
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kyudong Han
- Department of biomedical Sciences, College of Bio-convergence, Dankook University, 31116, Dandae-ro 119, Dongnam-gu, Cheonan, 31116, Republic of Korea.
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea.
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea.
| |
Collapse
|
2
|
Zhang H, He Q, Jiang X, Wang H, Wang Y, Ma M, Hu Q, Gong Y. A New Algivorous Heterolobosean Amoeba, Euplaesiobystra perlucida sp. nov. (Tetramitia, Discoba), Isolated from Pilot-Scale Cultures of Phaeodactylum tricornutum. Microbiol Spectr 2023; 11:e0081723. [PMID: 37378530 PMCID: PMC10434026 DOI: 10.1128/spectrum.00817-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The diatom Phaeodactylum tricornutum is regarded as a prospective "cell factory" for the high-value products fucoxanthin and eicosapentaenoic acid (EPA). However, contamination with grazing protozoa is a significant barrier to its commercial cultivation. Here, we describe a new species of heterolobosean amoeba, Euplaesiobystra perlucida, which caused the loss of Phaeodactylum tricornutum in pilot-scale cultures. Morphological and molecular characteristics distinguish E. perlucida from the other species in the genus Euplaesiobystra. E. perlucida is 1.4 to 3.2 times larger than other Euplaesiobystra species in terms of average length/width and maximum length/width of the trophozoites. Unlike Euplaesiobystra salpumilio, E. perlucida has no cytostome; E. perlucida lacks a flagellate stage, whereas Euplaesiobystra hypersalinica and E. salpumilio both display a flagellate stage in their life cycle. The small-subunit rRNA gene sequence of E. perlucida shared only 88.02% homology with that of its closest relative, Euplaesiobystra dzianiensis, and had two distinctive regions. Its phylogenetic branch was clustered with one uncultured heterolobosean clone (bootstrap support/posterior probability = 100%/1.00). Results of feeding experiments demonstrated that E. perlucida could graze on various unicellular and filamentous eukaryotic microalgae (chlorophytes, chrysophytes, euglenids, and diatoms) and cyanobacteria. E. perlucida's ingestion rate declined exponentially with increasing size of unicellular prey, and E. perlucida attained the highest growth rates on P. tricornutum. On the basis of its strong ability to graze on microalgae, capacity to form large populations in a short period of time, and capacity to form resistant resting cysts, this contaminant has the potential to cause severe problems in large-scale microalgal culture and merits further attention. IMPORTANCE Heteroloboseans have garnered considerable interest because of their extraordinary ecological, morphological, and physiological diversity. Many heteroloboseans have adapted to various extensive habitats, including halophilic, acidophilic, thermophilic, psychrophilic, and anaerobic habitats. Most heteroloboseans are bacterivores, with a few algivorous species reported. In this study, a new species of algivorous heterolobosean amoeba, Euplaesiobystra perlucida, is described as a significant grazer that causes losses in outdoor industrial Phaeodactylum cultures. This study provides phenotypic, feeding, and genetic information on a previously unknown heterolobosean, emphasizes the impact of contaminating amoebae in commercial microalgal cultures, and will contribute to the management strategies for predicting this kind of contaminant in large-scale microalgal cultivation.
Collapse
Affiliation(s)
- Hanwen Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxia Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yulu Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyang Ma
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Qiang Hu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yingchun Gong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Khaw YS, Yusoff FM, Tan HT, Noor Mazli NAI, Nazarudin MF, Shaharuddin NA, Omar AR, Takahashi K. Fucoxanthin Production of Microalgae under Different Culture Factors: A Systematic Review. Mar Drugs 2022; 20:md20100592. [PMID: 36286416 PMCID: PMC9604996 DOI: 10.3390/md20100592] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Fucoxanthin is one of the light-harvesting pigments in brown microalgae, which is increasingly gaining attention due to its numerous health-promoting properties. Currently, the production of microalgal fucoxanthin is not yet feasible from an economic perspective. However, the cultivation of microalgae at favourable conditions holds great potential to increase the viability of this fucoxanthin source. Hence, this study aimed to review the fucoxanthin production of microalgae under different conditions systematically. A literature search was performed using the Web of Science, Scopus and PubMed databases. A total of 188 articles were downloaded and 28 articles were selected for the current review by two independent authors. Microalgae appeared to be a more reliable fucoxanthin source compared to macroalgae. Overall, a consensus fucoxanthin production condition was obtained and proposed: light intensity ranging from 10 to 100 µmol/m2/s could achieve a higher fucoxanthin content. However, the optimal light condition in producing fucoxanthin is species-specific. The current review serves as an antecedent by offering insights into the fucoxanthin-producing microalgae response to different culture factors via a systematic analysis. With the current findings and recommendations, the feasibility of producing fucoxanthin commercially could be enhanced and possibly achieve practical and sustainable fucoxanthin production.
Collapse
Affiliation(s)
- Yam Sim Khaw
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Fatimah Md Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Port Dickson 71050, Negeri Sembilan, Malaysia
- Correspondence: ; Tel.: +60-3-89408311
| | - Hui Teng Tan
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nur Amirah Izyan Noor Mazli
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Farhan Nazarudin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kazutaka Takahashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8657, Japan
| |
Collapse
|