1
|
Veerabadhran M, Chen L, Lens PNL, Nancharaiah YV. Algal-bacterial granules for circular bioeconomy: Formation mechanisms and biotechnological applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125393. [PMID: 40250180 DOI: 10.1016/j.jenvman.2025.125393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Cyanobacteria and microalgae are sustainable and renewable biocatalysts for solar energy harvesting, recovering nutrients from wastewater, reducing greenhouse gas emissions from wastewater treatment plants (WWTPs) and enable creation of a sustainable circular bioeconomy. Pure and axenic cultures of photosynthetic microorganisms have been widely studied for synthesizing bio-based products through improving the metabolic pathways via genetic engineering. However, pure cultures suffer from contamination and separation challenges when considered for environmental applications. Mixed microbial communities comprising of photosynthetic organisms and bacteria in the form of either flocs or granules have recently received a lot of attention due to their potential contribution to wastewater treatment, environmental sustainability and circular bioeconomy. The advantages of algal-bacterial granules (ABG) in WWTPs include effective elimination of contaminants and nutrients, reduction in aeration requirement, and production of biomass feedstock for downstream processing. Although ABG are an attractive option for energy positive wastewater treatment, it is not yet matured as technological option for deployment in full-scale WWTPs. Moreover, several aspects of ABG including synergistic metabolism, granulation mechanisms, granular stability, bioreactor operating conditions, cell-cell interactions, extracellular polymeric substances and bio-based products deserve more intense research. This article provides a detailed overview of algal-bacterial communities, their occurrence in natural environments, ABG cultivation in engineered settings, potential biotechnological applications and the recent progress made towards sustainable biological wastewater treatment and circular bioeconomy.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Biofouling and Biofilm Processes Section, WSCD, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Microbial Process Engineering Group, Microbial Manufacturing Engineering Centre, Chinese Academy of Sciences - Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao, 266101, Shandong, China
| | - Lin Chen
- Microbial Process Engineering Group, Microbial Manufacturing Engineering Centre, Chinese Academy of Sciences - Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao, 266101, Shandong, China.
| | - Piet N L Lens
- IHE Delft Institute for Water Education, Westvest 7, the Netherlands
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, WSCD, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
2
|
Wichaphian A, Kamngoen A, Pathom-aree W, Maneechote W, Khuendee T, Chromkaew Y, Cheirsilp B, Shyu DJH, Srinuanpan S. Integrating Microalgal Chlorella Biomass and Biorefinery Residues into Sustainable Agriculture and Food Production: Insights from Lettuce Cultivation. Foods 2025; 14:808. [PMID: 40077511 PMCID: PMC11898777 DOI: 10.3390/foods14050808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Microalgal biomass offers a promising biofertilizer option due to its nutrient-rich composition, adaptability, and environmental benefits. This study evaluated the potential of microalgal-based biofertilizers-microalgal Chlorella biomass, de-oiled microalgal biomass (DMB), and de-oiled and de-aqueous extract microalgal biomass (DAEMB)-in enhancing lettuce growth, soil nutrient dynamics, and microbial community composition. Lettuce seedlings were cultivated with these biofertilizers, and plant growth parameters, photosynthetic pigments, and nitrogen uptake were assessed. Soil incubation experiments further examined nutrient mineralization rates, while DNA sequencing analyzed shifts in rhizosphere microbial communities. Lettuce grown with these biofertilizers exhibited improved growth parameters compared to controls, with Chlorella biomass achieving a 31.89% increase in shoot length, 27.98% in root length, and a 47.33% increase in fresh weight. Chlorophyll a and total chlorophyll levels increased significantly in all treatments, with the highest concentrations observed in the Chlorella biomass treatment. Soil mineralization studies revealed that DMB and DAEMB provided a gradual nitrogen release, while Chlorella biomass exhibited a rapid nutrient supply. Microbial community analyses revealed shifts in bacterial and fungal diversity, with increased abundance of nitrogen-fixing and nutrient-cycling taxa. Notably, fungal diversity was enriched in biomass and DAEMB treatments, enhancing soil health and reducing pathogenic fungi. These findings highlight microalgal biofertilizers' potential to enhance soil fertility, plant health, and sustainable resource use in agriculture.
Collapse
Affiliation(s)
- Antira Wichaphian
- Master of Science Program in Applied Microbiology (International Program), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.P.-a.); (W.M.)
- Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai 50200, Thailand;
- Functional Genomics Laboratory, Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan;
| | - Apiwit Kamngoen
- Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wasu Pathom-aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.P.-a.); (W.M.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wageeporn Maneechote
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.P.-a.); (W.M.)
- Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tawanchai Khuendee
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Yupa Chromkaew
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Benjamas Cheirsilp
- Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Douglas J. H. Shyu
- Functional Genomics Laboratory, Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan;
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.P.-a.); (W.M.)
- Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Pekkoh J, Thurakit T, Ruangrit K, Chaichana C, Phinyo K, Lomakool S, Wichaphian A, Cheirsilp B, Srinuanpan S. Co-bioaugmentation with microalgae and probiotic bacteria: Sustainable solutions for upcycling of aquaculture wastewater and agricultural residues into microbial-rice bran complexes. ENVIRONMENTAL RESEARCH 2024; 261:119760. [PMID: 39121700 DOI: 10.1016/j.envres.2024.119760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Aquaculture farming generates a significant amount of wastewater, which has prompted the development of creative bioprocesses to improve wastewater treatment and bioresource recovery. One promising method of achieving these aims is to directly recycle pollutants into microbe-rice bran complexes, which is an economical and efficient technique for wastewater treatment that uses synergetic interactions between algae and bacteria. This study explores novel bioaugmentation as a promising strategy for efficiently forming microbial-rice bran complexes in unsterilized aquaculture wastewater enriched with agricultural residues (molasses and rice bran). Results found that rice bran serves a dual role, acting as both an alternative nutrient source and a biomass support for microalgae and bacteria. Co-bioaugmentation, involving the addition of probiotic bacteria (Bacillus syntrophic consortia) and microalgae consortiums (Tetradesmus dimorphus and Chlorella sp.) to an existing microbial community, led to a remarkable 5-fold increase in microbial-rice bran complex yields compared to the non-bioaugmentation approach. This method provided the most compact biofloc structure (0.50 g/L) and a large particle diameter (404 μm). Co-bioaugmentation significantly boosts the synthesis of extracellular polymeric substances, comprising proteins at 6.5 g/L and polysaccharides at 0.28 g/L. Chlorophyta, comprising 80% of the total algal phylum, and Proteobacteria, comprising 51% of the total bacterial phylum, are emerging as dominant species. These microorganisms play a crucial role in waste and wastewater treatment, as well as in the formation of microbial-rice bran complexes that could serve as an alternative aquaculture feed. This approach prompted changes in both microbial community structure and nutrient cycling processes, as well as water quality. These findings provide valuable insights into the transformative effects of bioaugmentation on the development of microbial-rice bran complexes, offering potential applications in bioprocesses for waste and wastewater management.
Collapse
Affiliation(s)
- Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Theera Thurakit
- Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Khomsan Ruangrit
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chatchawan Chaichana
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sureeporn Lomakool
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai, 50200, Thailand; Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Antira Wichaphian
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai, 50200, Thailand; Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Wichaphian A, Kaewman N, Pathom-Aree W, Phinyo K, Pekkoh J, Chromkaew Y, Cheirsilp B, Srinuanpan S. Zero-waste biorefining co-products from ultrasonically assisted deep eutectic solvent-pretreated Chlorella biomass: Sustainable production of biodiesel and bio-fertilizer. BIORESOURCE TECHNOLOGY 2024; 408:131163. [PMID: 39079573 DOI: 10.1016/j.biortech.2024.131163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Microalgal biomass is gaining increasing attention to produce high-value co-products. This study proposes integrating Chlorella microalgal biomass into a zero-waste biorefining system, aiming to produce biodiesel and biofertilizer. It investigates optimal conditions for ultrasound-assisted deep eutectic solvent (DES) pretreatment and lipid recovery to enhance the extraction of lipids. Optimal DES pretreatment was identified as a 1.6:1 acetic acid-to-choline chloride molar ratio, 0.36 g biomass loading, and 2.50 min of pretreatment. Lipid recovery succeeded with a 10-minute extraction time and a 1:3 methanol-to-butanol volume ratio. These conditions yielded biodiesel-quality lipids at 139.52 mg/g microalgal biomass with superior fuel characteristics. The de-oiled microalgal biomass residue exhibited promise as a lettuce biofertilizer, enhancing photosynthetic pigments but potentially reducing yields by 40 %. The study also notes changes in rhizosphere microbial communities, indicating both stimulatory and inhibitory effects on beneficial microbes. This study has the potential to enhance sustainability in energy, agriculture, and the environment.
Collapse
Affiliation(s)
- Antira Wichaphian
- Master of Science Program in Applied Microbiology (International Program), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitiphong Kaewman
- Master of Science Program in Applied Microbiology (International Program), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yupa Chromkaew
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, International Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
5
|
Pathom-Aree W, Sattayawat P, Inwongwan S, Cheirsilp B, Liewtrakula N, Maneechote W, Rangseekaew P, Ahmad F, Mehmood MA, Gao F, Srinuanpan S. Microalgae growth-promoting bacteria for cultivation strategies: Recent updates and progress. Microbiol Res 2024; 286:127813. [PMID: 38917638 DOI: 10.1016/j.micres.2024.127813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Microalgae growth-promoting bacteria (MGPB), both actinobacteria and non-actinobacteria, have received considerable attention recently because of their potential to develop microalgae-bacteria co-culture strategies for improved efficiency and sustainability of the water-energy-environment nexus. Owing to their diverse metabolic pathways and ability to adapt to diverse conditions, microalgal-MGPB co-cultures could be promising biological systems under uncertain environmental and nutrient conditions. This review proposes the recent updates and progress on MGPB for microalgae cultivation through co-culture strategies. Firstly, potential MGPB strains for microalgae cultivation are introduced. Following, microalgal-MGPB interaction mechanisms and applications of their co-cultures for biomass production and wastewater treatment are reviewed. Moreover, state-of-the-art studies on synthetic biology and metabolic network analysis, along with the challenges and prospects of opting these approaches for microalgal-MGPB co-cultures are presented. It is anticipated that these strategies may significantly improve the sustainability of microalgal-MGPB co-cultures for wastewater treatment, biomass valorization, and bioproducts synthesis in a circular bioeconomy paradigm.
Collapse
Affiliation(s)
- Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Naruepon Liewtrakula
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fengzheng Gao
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Zurich 8092, Switzerland; Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
6
|
Iqhrammullah M, Chiari W, Hudaa S, Irhamni I, Fahrurrozi, Akbar SA. Microalgal-bacterial interactions: Research trend and updated review. Heliyon 2024; 10:e35324. [PMID: 39170559 PMCID: PMC11336587 DOI: 10.1016/j.heliyon.2024.e35324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Microalgae are being recognized as the key contributor to sustainability in many sectors, starting from energy up to food industries. The microorganism has also been utilized as environmental remediator, capable of converting organic compounds into economically valuable biomass. To optimize the use of microalgae in these sectors, researchers have explored various approaches, of which is the use of bacteria. The interaction between bacteria and microalgae can potentially be harnessed, but its complexity requires extensive research. Herein, we present the bibliometric analysis on microalgal-bacterial interactions. The metadata of published literature was collected through Scopus database on August 4, 2023. The downloaded.csv file was uploaded to VOSViewer and biblioshiny for network visualization. We found that the research has gained a lot of attention from researchers since 2012 with an exponential increase of the publication number. The United States and China are leading the research with a strong collaboration. Based on the research sub-topic clusters, the interaction is mostly studied for wastewater treatment, biomass production, and algal bloom control. Updated reviews on this topic reveal that researchers are now focus on optimizing the efficacy of microalgae-bacteria system, investigating the modes of actions, and identifying challenges in its real-world implementation. The microalgal-bacterial interaction is a promising approach for microalgae utilization in wastewater treatment, biomass production, and algal bloom control.
Collapse
Affiliation(s)
- Muhammad Iqhrammullah
- Research Center for Marine and Land Bioindustry National Research and Innovation Agency (BRIN), North Lombok, 83756, Indonesia
- Postgraduate Program of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh, 23123, Indonesia
| | - Williams Chiari
- Division of Mathematical and Physical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Syihaabul Hudaa
- Department of Management, Institut Teknologi dan Bisnis Ahmad Dahlan Jakarta, Banten, 15419, Indonesia
| | - Irhamni Irhamni
- Department of Environmental Engineering, Faculty of Infrastructure and Regional Technology, Institut Teknologi Sumatera, Lampung Selatan, 35365, Indonesia
- Department of Environmental Engineering, Faculty of Engineering, Universitas Serambi Mekkah, Banda Aceh, 23245, Indonesia
| | - Fahrurrozi
- Research Center for Marine and Land Bioindustry National Research and Innovation Agency (BRIN), North Lombok, 83756, Indonesia
| | - Said Ali Akbar
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| |
Collapse
|
7
|
Li X, Li S, Xie P, Chen X, Chu Y, Chang H, Sun J, Li Q, Ren N, Ho SH. Advanced wastewater treatment with microalgae-indigenous bacterial interactions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100374. [PMID: 38283868 PMCID: PMC10821166 DOI: 10.1016/j.ese.2023.100374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Microalgal-indigenous bacterial wastewater treatment (MBWT) emerges as a promising approach for the concurrent removal of nitrogen (N) and phosphorus (P). Despite its potential, the prevalent use of MBWT in batch systems limits its broader application. Furthermore, the success of MBWT critically depends on the stable self-adaptation and synergistic interactions between microalgae and indigenous bacteria, yet the underlying biological mechanisms are not fully understood. Here we explore the viability and microbial dynamics of a continuous flow microalgae-indigenous bacteria advanced wastewater treatment system (CFMBAWTS) in processing actual secondary effluent, with a focus on varying hydraulic retention times (HRTs). The research highlights a stable, mutually beneficial relationship between indigenous bacteria and microalgae. Microalgae and indigenous bacteria can create an optimal environment for each other by providing essential cofactors (like iron, vitamins, and indole-3-acetic acid), oxygen, dissolved organic matter, and tryptophan. This collaboration leads to effective microbial growth, enhanced N and P removal, and energy generation. The study also uncovers crucial metabolic pathways, functional genes, and patterns of microbial succession. Significantly, the effluent NH4+-N and P levels complied with the Chinese national Class-II, Class-V, Class-IA, and Class-IB wastewater discharge standards when the HRT was reduced from 15 to 6 h. Optimal results, including the highest rates of CO2 fixation (1.23 g L-1), total energy yield (32.35 kJ L-1), and the maximal lipid (33.91%) and carbohydrate (41.91%) content, were observed at an HRT of 15 h. Overall, this study not only confirms the feasibility of CFMBAWTS but also lays a crucial foundation for enhancing our understanding of this technology and propelling its practical application in wastewater treatment plants.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Jian Sun
- Central Southern China Municipal Engineering Design and Research Institute Co., Ltd, Wuhan, 430010, PR China
| | - Qing Li
- Central Southern China Municipal Engineering Design and Research Institute Co., Ltd, Wuhan, 430010, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
8
|
Geng Y, Xiong Z, Yang L, Lian CA, Pavlostathis SG, Qiu Z, Chen H, Luo Q, Liu Y, Liu Z, Shao P, Zou JP, Jiang H, Luo S, Yu K, Luo X. Bidirectional Enhancement of Nitrogen Removal by Indigenous Synergetic Microalgal-Bacterial Consortia in Harsh Low-C/N Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5394-5404. [PMID: 38463002 DOI: 10.1021/acs.est.3c10322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Conventional microalgal-bacterial consortia have limited capacity to treat low-C/N wastewater due to carbon limitation and single nitrogen (N) removal mode. In this work, indigenous synergetic microalgal-bacterial consortia with high N removal performance and bidirectional interaction were successful in treating rare earth tailing wastewaters with low-C/N. Ammonia removal reached 0.89 mg N L-1 h-1, 1.84-fold more efficient than a common microalgal-bacterial system. Metagenomics-based metabolic reconstruction revealed bidirectional microalgal-bacterial interactions. The presence of microalgae increased the abundance of bacterial N-related genes by 1.5- to 57-fold. Similarly, the presence of bacteria increased the abundance of microalgal N assimilation by 2.5- to 15.8-fold. Furthermore, nine bacterial species were isolated, and the bidirectional promotion of N removal by the microalgal-bacterial system was verified. The mechanism of microalgal N assimilation enhanced by indole-3-acetic acid was revealed. In addition, the bidirectional mode of the system ensured the scavenging of toxic byproducts from nitrate metabolism to maintain the stability of the system. Collectively, the bidirectional enhancement system of synergetic microalgae-bacteria was established as an effective N removal strategy to broaden the stable application of this system for the effective treatment of low C/N ratio wastewater.
Collapse
Affiliation(s)
- Yanni Geng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Zhensheng Xiong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Chun-Ang Lian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, United States
| | - Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Houxing Chen
- ECO-ADVANCE CO., LED, Ganzhou, Jiangxi 341000, P. R. China
| | - Qingchun Luo
- ECO-ADVANCE CO., LED, Ganzhou, Jiangxi 341000, P. R. China
| | - Yuanqi Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Zhuochao Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Jian-Ping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Hualin Jiang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Shenglian Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
- School of Life Science, Jinggangshan University, Ji'an 343009, P. R. China
| |
Collapse
|
9
|
Sahu S, Kaur A, Singh G, Kumar Arya S. Harnessing the potential of microalgae-bacteria interaction for eco-friendly wastewater treatment: A review on new strategies involving machine learning and artificial intelligence. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119004. [PMID: 37734213 DOI: 10.1016/j.jenvman.2023.119004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
In the pursuit of effective wastewater treatment and biomass generation, the symbiotic relationship between microalgae and bacteria emerges as a promising avenue. This analysis delves into recent advancements concerning the utilization of microalgae-bacteria consortia for wastewater treatment and biomass production. It examines multiple facets of this symbiosis, encompassing the judicious selection of suitable strains, optimal culture conditions, appropriate media, and operational parameters. Moreover, the exploration extends to contrasting closed and open bioreactor systems for fostering microalgae-bacteria consortia, elucidating the inherent merits and constraints of each methodology. Notably, the untapped potential of co-cultivation with diverse microorganisms, including yeast, fungi, and various microalgae species, to augment biomass output. In this context, artificial intelligence (AI) and machine learning (ML) stand out as transformative catalysts. By addressing intricate challenges in wastewater treatment and microalgae-bacteria symbiosis, AI and ML foster innovative technological solutions. These cutting-edge technologies play a pivotal role in optimizing wastewater treatment processes, enhancing biomass yield, and facilitating real-time monitoring. The synergistic integration of AI and ML instills a novel dimension, propelling the fields towards sustainable solutions. As AI and ML become integral tools in wastewater treatment and symbiotic microorganism cultivation, novel strategies emerge that harness their potential to overcome intricate challenges and revolutionize the domain.
Collapse
Affiliation(s)
- Sudarshan Sahu
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Anupreet Kaur
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Shailendra Kumar Arya
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
10
|
Cheirsilp B, Maneechote W, Srinuanpan S, Angelidaki I. Microalgae as tools for bio-circular-green economy: Zero-waste approaches for sustainable production and biorefineries of microalgal biomass. BIORESOURCE TECHNOLOGY 2023; 387:129620. [PMID: 37544540 DOI: 10.1016/j.biortech.2023.129620] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Microalgae are promising organisms that are rapidly gaining much attention due to their numerous advantages and applications, especially in biorefineries for various bioenergy and biochemicals. This review focuses on the microalgae contributions to Bio-Circular-Green (BCG) economy, in which zero-waste approaches for sustainable production and biorefineries of microalgal biomass are introduced and their possible integration is discussed. Firstly, overviews of wastewater upcycling and greenhouse gas capture by microalgae are given. Then, a variety of valuable products from microalgal biomass, e.g., pigments, vitamins, proteins/peptides, carbohydrates, lipids, polyunsaturated fatty acids, and exopolysaccharides, are summarized to emphasize their biorefinery potential. Techno-economic and environmental analyses have been used to evaluate sustainability of microalgal biomass production systems. Finally, key issues, future perspectives, and challenges for zero-waste microalgal biorefineries, e.g., cost-effective techniques and innovative integrations with other viable processes, are discussed. These strategies not only make microalgae-based industries commercially feasible and sustainable but also reduce environmental impacts.
Collapse
Affiliation(s)
- Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Chiang Mai Research Group for Carbon Capture and Storage, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Irini Angelidaki
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby DK-2800, Denmark
| |
Collapse
|
11
|
Muter O. Current Trends in Bioaugmentation Tools for Bioremediation: A Critical Review of Advances and Knowledge Gaps. Microorganisms 2023; 11:710. [PMID: 36985282 PMCID: PMC10056695 DOI: 10.3390/microorganisms11030710] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Bioaugmentation is widely used in soil bioremediation, wastewater treatment, and air biofiltration. The addition of microbial biomass to contaminated areas can considerably improve their biodegradation performance. Nevertheless, analyses of large data sets on the topic available in literature do not provide a comprehensive view of the mechanisms responsible for inoculum-assisted stimulation. On the one hand, there is no universal mechanism of bioaugmentation for a broad spectrum of environmental conditions, contaminants, and technology operation concepts. On the other hand, further analyses of bioaugmentation outcomes under laboratory conditions and in the field will strengthen the theoretical basis for a better prediction of bioremediation processes under certain conditions. This review focuses on the following aspects: (i) choosing the source of microorganisms and the isolation procedure; (ii) preparation of the inoculum, e.g., cultivation of single strains or consortia, adaptation; (iii) application of immobilised cells; (iv) application schemes for soil, water bodies, bioreactors, and hydroponics; and (v) microbial succession and biodiversity. Reviews of recent scientific papers dating mostly from 2022-2023, as well as our own long-term studies, are provided here.
Collapse
Affiliation(s)
- Olga Muter
- Faculty of Biology, University of Latvia, LV-1004 Riga, Latvia
| |
Collapse
|
12
|
Kolek L, Inglot M, Jarosiewicz P. Nutrient cycling enhancement in intensive-extensive aquaculture through C/N ratio manipulation and periphyton support. BIORESOURCE TECHNOLOGY 2023; 368:128309. [PMID: 36370938 DOI: 10.1016/j.biortech.2022.128309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The external carbon source and the installation of periphyton structures were applied in combined intensive-extensive aquaculture to test their efficiency of nutrient utilization to support clean and efficient fish production. Two aquaculture systems were tested, with one additionally treated with methanol as a source of carbohydrates for microbial activity stimulation and an additional area for periphyton installed. Each system was composed of fish tanks with intensively reared sturgeon and one extensive pond stocked with common carp in polyculture. The water from intensive fish production was discharged into the fish pond, to serve as a nutrient source for primary production in the pond. Obtained data revealed that applied manipulations enhanced microorganism development and pond productivity. The results of the research show that applied moderate, nature-based upgrade in aquaculture system may allow for more efficient and cost-effective treatment of wastewater from intensive aquaculture.
Collapse
Affiliation(s)
- Ludmila Kolek
- Institute of Ichthyobiology and Aquaculture Polish Academy of Science in Gołysz, Zaborze, Kalinowa 2 Str., 43-520 Chybie, Poland.
| | - Michał Inglot
- Institute of Ichthyobiology and Aquaculture Polish Academy of Science in Gołysz, Zaborze, Kalinowa 2 Str., 43-520 Chybie, Poland
| | - Paweł Jarosiewicz
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland; European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland
| |
Collapse
|