1
|
Yang P, Sun D, Liu W, Liu K, Yang H, Tong C, Zhang L, Lin Y, Lai DYF, Tan L, Chen W, Tang KW. Use of biochar derived from Spartina alterniflora to reduce sediment methane (CH 4) production potential during non-farming period in earthen aquaculture ponds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125575. [PMID: 39725207 DOI: 10.1016/j.envpol.2024.125575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Biochar has been proposed as an effective material for mitigating greenhouse gas emissions from farmlands, but comparable information for earthen aquaculture ponds is limited. A field study was conducted to investigate the effects of adding biochar (200-1600 kg ha-1) derived from the invasive plant Spartina alterniflora on sediment physico-chemical properties, CH4 production potential (PCH4), and the relevant functional gene abundances in earthen aquaculture ponds during the non-farming period. The results indicated that biochar treatments increased sediment porosity and salinity, while decreasing dissolved organic carbon and microbial biomass carbon. Biochar-treated sediments also exhibited a significantly lower abundance of mcrA gene especially in the early drainage stage, and a higher abundance of pmoA gene especially in the intermediate and final drainage stages. Consequently, the mean PCH4 in biochar-treated sediments (1.28-21.12 ng g-1 d-1) was 57-73% lower than in the control group (5.41-39.45 ng g-1 d-1). The reduction in PCH4 did not differ between biochar produced at 300 °C vs. 500 °C and was not dependent on the amount of biochar added. The findings suggest that using biochar derived from S. alterniflora can be a cost-effective method to control the spread of this invasive plant and reduce CH4 production in aquaculture pond sediment during the non-farming period.
Collapse
Affiliation(s)
- Ping Yang
- Institute of Geography, Fujian Normal University, Fuzhou, 350117, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, 350117, China.
| | - Dongyao Sun
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenjing Liu
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Kaiyuan Liu
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Hong Yang
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
| | - Chuan Tong
- Institute of Geography, Fujian Normal University, Fuzhou, 350117, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Linhai Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yongxin Lin
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, 350117, China
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Lishan Tan
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Weifeng Chen
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Kam W Tang
- Department of Life Sciences, Texas A&M University-Corpus Christi, TX, 78412, USA.
| |
Collapse
|
2
|
Zhang H, Chen W, Qi Z, Qian W, Yang L, Wei R, Ni J. Biochar improved the solubility of triclocarban in aqueous environment: Insight into the role of biochar-derived dissolved organic carbon. CHEMOSPHERE 2024; 351:141172. [PMID: 38211797 DOI: 10.1016/j.chemosphere.2024.141172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Biochar as an effective adsorbent can be used for the removal of triclocarban from wastewater. Biochar-derived dissolved organic carbon (BC-DOC) is an important carbonaceous component of biochar, nonetheless, its role in the interaction between biochar and triclocarban remains little known. Hence, in this study, sixteen biochars derived from pine sawdust and corn straw with different physico-chemical properties were produced in nitrogen-flow and air-limited atmospheres at 300-750 °C, and investigated the effect of BC-DOC on the interaction between biochar and triclocarban. Biochar of 600∼750 °C with low polarity, high aromaticity, and high porosity presented an adsorption effect on triclocarban owing to less BC-DOC release as well as the strong π-π, hydrophobic, and pore filling interactions between biochar and triclocarban. In contrast and intriguingly, biochar of 300∼450 °C with low aromaticity and high polarity exhibited a significant solubilization effect rather than adsorption effect on triclocarban in aqueous solution. The maximum solubilization content of triclocarban in biochar-added solution reached approximately 3 times its solubility in biochar-free solution. This is mainly because the solubilization effect of BC-DOC surpassed the adsorption effect of biochar though the BC-DOC only accounted for 0.01-1.5 % of bulk biochar mass. Furthermore, the high solubilization content of triclocarban induced by biochar was dependent on the properties of BC-DOC as well as the increasing BC-DOC content. BC-DOC with higher aromaticity, larger molecular size, higher polarity, and more humic-like matters had a greater promoting effect on the water-solubility of triclocarban. This study highlights that biochar may promote the solubility of some organic pollutants (e.g., triclocarban) in aqueous environment and enhance their potential risk.
Collapse
Affiliation(s)
- Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Wei Qian
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Liumin Yang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| |
Collapse
|
3
|
Han W, Zhang M, Zhao Y, Chen W, Sha H, Wang L, Diao Y, Tan Y, Zhang Y. Tetracycline removal from soil by phosphate-modified biochar: Performance and bacterial community evolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168744. [PMID: 38007113 DOI: 10.1016/j.scitotenv.2023.168744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Since the remediation performance of soil tetracycline pollution by original biochar is not ideal, many modified methods have been proposed to improve its performance. Considering the cost, complex modification process and environmental friendliness, many modified biochar are difficult to be used in soil environments. In this work, biochar derived from corn stover was modified using phosphate to increase the adsorption ability of soil tetracycline and alleviate the negative effects caused by tetracycline. The results showed that pyrolysis temperatures and anion types of phosphate (PO43-, HPO42-, H2PO4-) played important roles in the performance of modified biochar. Compared with original biochar, phosphate modified biochar not only improved the adsorption capacity, but also changed the adsorption behavior of tetracycline. Via SEM, BET and FTIR techniques, the intrinsic reasons for the increase of adsorption capacity were explained by the change of morphological structures as well as functional groups of the modified biochar. K3PO4 and high temperature (800 °C) maximally improved the surface morphology, increased the pore structure, changed the surface functional groups of biochar, and then increased the adsorption capacity of tetracycline (124.51 mg/g). Subsequently, the optimal material (K3PO4-800) was selected and applied for tetracycline contaminated soil remediation. Compared to the soil without remediation, K3PO4-800 modified biochar effectively reduced the effective concentration of tetracycline in soil, and improved soil K and P nutrition, and reshaped microbial communities. Our study showed that K3PO4-800 modified biochar was not only a good tetracycline resistant material, but also a good soil amendment.
Collapse
Affiliation(s)
- Wei Han
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Meng Zhang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Ying Zhao
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Weichang Chen
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Huixin Sha
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Yiran Diao
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Yuanji Tan
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China.
| |
Collapse
|
4
|
Rabiee Abyaneh M, Nabi Bidhendi G, Daryabeigi Zand A. Pb(ΙΙ), Cd(ΙΙ), and Mn(ΙΙ) adsorption onto pruning-derived biochar: physicochemical characterization, modeling and application in real landfill leachate. Sci Rep 2024; 14:3426. [PMID: 38341513 PMCID: PMC11306770 DOI: 10.1038/s41598-024-54028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of this study was to systemically evaluate how different pyrolysis temperatures (400, 550, and 700 °C) and particle sizes (1-2 mm and 63-75 µm) were influenced biochar evolution, made from urban pruning waste, during pyrolysis process and to establish their relationships with biochar potential for removal of lead (Pb), cadmium (Cd), and manganese (Mn) from real municipal solid waste landfill leachate. The effects of pH (2-7), contact time (30-300 min) and adsorbent dosage (0.1-5 g L-1) on heavy metals removal were also examined. The results showed that physicochemical properties of biochar were greatly influenced by pyrolysis temperature. Particle size, however, showed little influence on biochar characteristics (p > 0.05). The yield, volatile matter, hydrogen and oxygen contents, and surface functional groups decreased consistently with increasing pyrolysis temperature. An increase in the pH, electrical conductivity, ash, fixed carbon, and specific surface area values was also found. In biochar samples formed at high temperatures (i.e., 550 and 700 °C), Fourier transform infrared spectroscopy-FTIR studies confirmed the increase in aromaticity. Field emission scanning electron microscopy-FESEM images showed differences in the microporous structure and lower size pores at higher temperatures. Biochar pyrolyzed at 700 °C with a particle size of 63-75 µm (i.e., Lv700-63) showed the highest removal efficiency performance. Pb and Cd ions were completely removed (100%) by 0.2 g L-1 Lv700-63 at 7.0 pH and contact times of 120 and 90 min, respectively. The maximum percentage removal of Mn was 86.20% at optimum conditions of 0.2 g L-1 Lv700-63 dosage, 7.0 pH, and 180 min contact time. The findings suggests that the surface complexation, π-electron coordination, and cation exchange were the dominant mechanisms for the Pb, Cd, and Mn removal onto Lv700-63.
Collapse
Affiliation(s)
- Maryam Rabiee Abyaneh
- Department of Environmental Engineering, University of Tehran, Kish International Campus, Kish, Iran.
| | | | | |
Collapse
|
5
|
Zhao Y, Zhang C, Ma L, Li J, Tan P, Fang Q, Chen G. Effects of temperature on the migration behaviour of arsenic and chromium in tannery sludge under CO 2 gasification. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132663. [PMID: 37783141 DOI: 10.1016/j.jhazmat.2023.132663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
To reduce heavy metals (HMs) contamination from tannery sludge, this study investigated the migration behaviour of arsenic (As) and chromium (Cr) at 700-900 °C using CO2 gasification. The HMs enrichment results showed that As contents of ash decreased (6.42→1.87 mg/kg) while Cr contents increased (41.40→78.24 mg/kg) over 700-900 °C. More Si-O bonds and fewer Ca-O bonds with increasing temperature in ash primarily determined this migration behaviour of HMs. Meanwhile, the proportions of toxic As(III) and Cr(VI) declined from 96.02% and 64.26-76.96% and 21.24%, forming As(0) and Cr(III) with less toxicity. This reduction was conducted via two pathways: (i) carbon reduced As(III)/Cr(VI) and (ii) carbon reduced Fe(II)/Fe(III) to Fe(0), then Fe(0) reduced As(III)/Cr(VI) assisted with carbon via Fe(0)→Fe(II)→Fe(III). However, free calcium ions oxidized As(0)/Cr(III) to As(III)/Cr(VI) at 700 ○C. At higher temperatures, silicate glass conversion of ash immobilized free calcium ions and barely oxidized HMs. Furthermore, this study identified the positive effect of increasing temperature on enhancing the stability of HMs in ash by transforming bioavailable HMs into non-bioavailable HMs, which decreased the leaching toxicity and environmental risk. Regarding HMs emissions control and cold gas efficiency, CO2 gasification treatment of tannery sludge is most effective at 800 °C.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cheng Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lun Ma
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junchen Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Tan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingyan Fang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gang Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Wu Y, Zhang P, Zhang PJ, Feng S, Du W, Li H, Pan B. The degradation of p-nitrophenol by biochar is dominated by its electron donating capacity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166115. [PMID: 37572893 DOI: 10.1016/j.scitotenv.2023.166115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
The typical aromatic and phenolic pollutant, p-nitrophenol (PNP), is extensively used in the industry and can seriously threaten the environmental health. Biochar, as a solid carbon-rich material, can directly degrade PNP. It has been reported that the PNP degradation by biochar is closely related to the electron exchange capacity of biochar (the sum of electron donating and accepting capacities). However, the roles of electron donating and accepting capacity of biochar in PNP degradation have not been distinguished before. In this study, the biochar samples were chemically modified to manipulate the electron donating and accepting capacities of biochar samples. Compared with pristine biochar (3.67 %), modified biochar had higher degradation efficiencies of PNP (>7.81 %). The strictly positive correlation between the electron donating capacities and the PNP degradation rates of biochar samples (r = 0.98, p < 0.05) indicated that the PNP degradation process by biochar is dominated by the reduction process. Although both the oxidation and reduction degradation products were found in the degradation system, the quenching experiment of OH, a key radical in the process of oxidation degradation, further proved that the oxidation process just played a minor role (<10 %) in the PNP degradation by biochar. This study shed light on the degradation mechanism of PNP by biochar and could promote the application of biochar in the pollution remediation.
Collapse
Affiliation(s)
- Yufei Wu
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Peng Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| | - Peng Jim Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Shihui Feng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hao Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| |
Collapse
|
7
|
Lyu P, Li L, Huang J, Ye J, Zhu C, Xie J, Wang Z, Kang M, Yan A. Enhancing sorption of layered double hydroxide-based magnetic biochar for arsenic and cadmium through optimized preparation protocols. BIORESOURCE TECHNOLOGY 2023; 388:129756. [PMID: 37696337 DOI: 10.1016/j.biortech.2023.129756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
The impact of multiple preparation protocols on properties and performance of modified biochar remains unclear. This study prepared layered double hydroxide (LDH)-based magnetic biochars (LMBCs) with different LDH loading rates (LLR), pyrolysis temperatures, and biomass sources to explore their performance-characterization relationships toward As(III) and Cd(II). Higher LLR and pyrolysis temperature enhanced LMBCs᾿ adsorption capacities by increasing specific surface area (SSA) and metal/O-containing groups. Hence, LMBC produced at 2:1 LLR (LDH: magnetic biochar) and 800 ℃ pyrolysis exhibited maximum adsorption over 2 times that of LMBC with 0.5:1 LLR and 400 ℃ pyrolysis. Bamboo-sourced LMBC demonstrated superior adsorption than sewage sludge and garlic-sourced LMBCs due to its increased SSA, enabling a higher loading of nano-LDH. Adsorption of As(III) and Cd(II) onto LMBCs was governed by metal-mineral and metal-containing group through co-precipitation and complexation. This study provides a reference for adjusting the preparation protocols to improve sorption performance of modified biochar toward multiple heavy metals.
Collapse
Affiliation(s)
- Peng Lyu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lianfang Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jinli Huang
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Ye
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinni Xie
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zihan Wang
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengqi Kang
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ao Yan
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Zhang X, Cai T, Zhang S, Hou J, Cheng L, Chen W, Zhang Q. Contamination distribution and non-biological removal pathways of typical tetracycline antibiotics in the environment: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132862. [PMID: 39492100 DOI: 10.1016/j.jhazmat.2023.132862] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
While the occurrence and removal technologies of tetracyclines in the environment have been reported, a comprehensive systematic summary and analysis remain limited, especially for new generations compounds such as doxycycline. In this review, the latest information regarding the distribution of various tetracyclines in different countries over the past seven years (2017-2023) reveals a notable absence of research reports in North America and Oceania. With China as the representative country, the investigation indicates that the maximum concentrations of TCs exceed 5 µg/L. The maximum concentration of tetracyclines in feces (26.22 µg/L) can reach one order of magnitude higher than that in other media. Furthermore, advanced oxidation technologies, such as Fenton processes, electrochemical oxidation, photolysis, ozonation, etc., were also examined, and the median degradation rate achieved 91.9-97.67%. Reactions such as methylation, demethylation, hydroxylation, dehydration, ring cleavage, and oxidation were observed during degradation. The most common intermediate product was identified as m/z = 461 (C22H25N2O9). This review indicates that future efforts should emphasize understanding the occurrence and fate of new-generation tetracyclines in the environment.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lei Cheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Wenjie Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
9
|
Wang K, Yao R, Zhang D, Peng N, Zhao P, Zhong Y, Zhou H, Huang J, Liu C. Tetracycline Adsorption Performance and Mechanism Using Calcium Hydroxide-Modified Biochars. TOXICS 2023; 11:841. [PMID: 37888692 PMCID: PMC10611203 DOI: 10.3390/toxics11100841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Tetracycline is frequently found in various environments and poses significant ecological risks. Calcium hydroxide-modified biochar has shown potential as a material for removing multiple classes of pollutants from wastewater streams. The tetracycline-adsorption performance and mechanism of alkali-modified biochars derived from nine wastes (corn straw, rice straw, swine manure, cypress powder, wheat straw, peanut shell, walnut shell powder, soybean straw, and corncobs) were investigated in the study. Among the four alkalis tested, calcium hydroxide exhibited the most effective modification effects at a pyrolysis temperature of 500 °C. Straw biomass was most suitable to be modified by calcium hydroxide, and calcium hydroxide-modified biochar showed the highest adsorption performance for tetracycline. The maximum adsorption capacities were 8.22 mg g-1 for pristine corn straw biochar and 93.46 mg g-1 for calcium hydroxide-modified corn straw biochar. The tetracycline adsorption mechanism by calcium hydroxide-modified corn straw biochar involved hydrogen bonding, oxygen-containing functional groups, Ca2+ metal complexation, and electrostatic attraction. Consequently, calcium hydroxide-modified corn straw biochar emerges as an environment-friendly, cost-effective, and efficient tetracycline adsorbent.
Collapse
Affiliation(s)
- Kaifeng Wang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Runlin Yao
- Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Na Peng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Ping Zhao
- Geological Party 105, Guizhou Provincial Bureau of Geology and Mineral Exploration and Development, Guiyang 550018, China
| | - Yongming Zhong
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Haijun Zhou
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Chen Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
10
|
Li R, Wang B, Wu P, Zhang J, Zhang X, Chen M, Cao X, Feng Q. Revealing the role of calcium alginate-biochar composite for simultaneous removing SO 42- and Fe 3+ in AMD: Adsorption mechanisms and application effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121702. [PMID: 37094733 DOI: 10.1016/j.envpol.2023.121702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
The remediation of acid mine drainage (AMD) is particularly challenging because it contains a large amount of Fe3+ and a high concentration of SO42-. To reduce the pollution caused by SO42- and Fe3+ in AMD and realize the recycling of solid waste, this study used distillers grains as raw materials to prepare biochar at different pyrolysis temperatures. Calcium alginate-biochar composite (CA-MB) was further synthesized via the entrapment method and used to simultaneously remove SO42- and Fe3+ from AMD. The effects of different influencing factors on the sorption process of SO42- and Fe3+ were studied through batch adsorption experiments. The adsorption behaviors and mechanisms of SO42- and Fe3+ were investigated with different adsorption models and characterizations. The results showed that the adsorption process of CA-MDB600 on SO42- and Fe3+ could be well described by Elovich and Langmuir-Freundlich models. It was further proved by the site energy analysis that the adsorption mechanisms of SO42- onto CA-MDB600 were mainly surface precipitation and electrostatic attraction, while that of Fe3+ removal was attributed to ion exchange, precipitation, and complexation. The applications of CA-MDB600 in actual AMD proved its good application potential. This study indicates that CA-MDB600 could be applied as a promising eco-friendly adsorbent for the remediation of AMD.
Collapse
Affiliation(s)
- Rui Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Pan Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Jian Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Miao Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xingxing Cao
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Qianwei Feng
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
11
|
Zhang H, Ni J, Qian W, Yu S, Xiang Y, Yang L, Chen W. Pyrolysis Atmospheres and Temperatures Co-Mediated Spectral Variations of Biochar-Derived Dissolved Organic Carbon: Quantitative Prediction and Self-Organizing Maps Analysis. Molecules 2023; 28:molecules28052247. [PMID: 36903493 PMCID: PMC10005102 DOI: 10.3390/molecules28052247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Biochar-derived dissolved organic carbon (BDOC), as a highly activated carbonaceous fraction of biochar, significantly affects the environmental effect of biochar. This study systematically investigated the differences in the properties of BDOC produced at 300-750 °C in three atmosphere types (including N2 and CO2 flows and air limitation) as well as their quantitative relationship with biochar properties. The results showed that BDOC in biochar pyrolyzed in air limitation (0.19-2.88 mg/g) was more than that pyrolyzed in N2 (0.06-1.63 mg/g) and CO2 flows (0.07-1.74 mg/g) at 450-750 °C. The aliphaticity, humification, molecular weight, and polarity of BDOC strongly depended on the atmosphere types as well as the pyrolysis temperatures. BDOC produced in air limitation contained more humic-like substances (0.65-0.89) and less fulvic-like substances (0.11-0.35) than that produced in N2 and CO2 flows. The multiple linear regression of the exponential form of biochar properties (H and O contents, H/C and (O+N)/C) could be used to quantitatively predict the bulk content and organic component contents of BDOC. Additionally, self-organizing maps could effectively visualize the categories of fluorescence intensity and components of BDOC from different pyrolysis atmospheres and temperatures. This study highlights that pyrolysis atmosphere types are a crucial factor controlling the BDOC properties, and some characteristics of BDOC can be quantitatively evaluated based on the properties of biochar.
Collapse
|
12
|
Yu S, Zhang H, Ni J, Xiang Y, Wei R, Qian W, Chen W. Spectral characteristics coupled with self-organizing maps analysis on different molecular size-fractionated water-soluble organic carbon from biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159424. [PMID: 36244488 DOI: 10.1016/j.scitotenv.2022.159424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Biochar-derived water-soluble organic carbon (BWSOC) plays important roles in the environmental effect of biochar. The environmental behavior and fate of BWSOC are closely related to its size distribution and chemical components. However, the molecular size-dependent BWSOC components and properties remain little known. To evaluate molecular size-dependent BWSOC characteristics, BWSOC samples were prepared by pyrolyzing biomasses in air-limitation and N2-flow atmospheres at 300-600 °C and fractionated through a series of membranes with different pore sizes including 0.7 μm, 0.45 μm, 100 kDa, 10 kDa, 3 kDa, and 1 kDa. In all BWSOCs, <1 kDa and 0.45-0.7 μm fractions had the maximum abundance (mean: 40.6 %) and the minimum abundance (mean: 4.4 %), respectively. The spectral characteristics of BWSOC including polarity index, spectral slope, and humification index varied significantly with molecular size. The fluorescence excitation-emission matrix parallel factor (EEM-PARAFAC) analysis indicated that BWSOC was mainly composed of three organic components (humic-like, fulvic-like, and aromatic protein/polyphenol-like substances). Humic-like and fulvic-like substances mainly existed in <1 kDa fraction, while aromatic protein/polyphenol-like substances mainly existed in medium-size fractions (3 kDa-0.45 μm). The different locations of <1 kDa, 1 kDa-0.45 μm, and 0.45-0.7 μm fractions in EEM and PARAFAC self-organizing maps indicated self-organizing maps could effectively distinguish 0.45-0.7 μm, 1 kDa-0.45 μm, and < 1 kDa fractions via the variations of fluorescence intensity and organic components. Additionally, the distribution ratio of different molecular size fractions as well as the abundances of organic components in different molecular size fractions were strongly controlled by pyrolysis atmospheres (air-limitation and N2-flow). This study systematically clarified the organic components and properties of different molecular size fractions in BWSOC, and the results are helpful to understand the possible environmental behavior and fate of BWSOC.
Collapse
Affiliation(s)
- Shuhan Yu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian normal university, Fuzhou, Fujian 350007, China
| | - Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian normal university, Fuzhou, Fujian 350007, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian normal university, Fuzhou, Fujian 350007, China
| | - Yu Xiang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian normal university, Fuzhou, Fujian 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian normal university, Fuzhou, Fujian 350007, China
| | - Wei Qian
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian normal university, Fuzhou, Fujian 350007, China.
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian normal university, Fuzhou, Fujian 350007, China.
| |
Collapse
|