1
|
Chen Y, Xie H, Shi Y, Wu J. Performance investigation of cutoff wall and permeable reactive barriers at a landfill: Multiscale experiments and numerical analyses. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 202:114832. [PMID: 40318321 DOI: 10.1016/j.wasman.2025.114832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/30/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
Environmental issues from waste management require reliable remediation techniques to prevent groundwater and soil pollution. Cut-off walls and permeable reactive barriers (PRBs) have been widely used for the control and remediation of groundwater pollution. However, the performance of the newly modified barrier materials and site remediation was not well explored. Therefore, in-depth and comparative analyses of 2 % carboxymethyl cellulose (CMC)-modified bentonite and 2 % unmodified sodium bentonite used in vertical barriers are required. Curtain and high-pressure jet grouting composed of CMC-modified bentonite were investigated in a field scale. Additionally, laboratory experiments were conducted to examine the permeability and adsorption properties of the PRB comprised of natural zeolite. The performances of vertical barriers and the PRB were compared by a three-dimensional numerical simulation based on the hydrogeological characteristics of a municipal solid waste landfill (MSWL) in southeastern China. The hydraulic conductivities of CMC-modified bentonite barriers could range from 21.9 %-50.5 % of those of unmodified sodium bentonite barriers, and could be as low as 1.02 × 10-8 cm/s. Contaminant fluxes through the cut-off wall and PRB were 38.67 % and 44.97 % of that without protection after 10 years in the polluted stratum. It was indicated that the removal rate of NH3-N can be 52.30 % at the 10th year by using PRBs. These results demonstrated the long-term performance of CMC-modified bentonite vertical barriers combined with PRBs is quite good at landfills or contaminated sites.
Collapse
Affiliation(s)
- Yang Chen
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Haijian Xie
- Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hanghzou 310058, China; Architectural Design and Research Institute of Zhejiang University, 148 Tianmushan Road, Hangzhou 310058, China.
| | - Yanghui Shi
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Jiawei Wu
- Architectural Design and Research Institute of Zhejiang University, 148 Tianmushan Road, Hangzhou 310058, China
| |
Collapse
|
2
|
Feng J, Zhu S, Huang S, Yu Y, Zhu N, Mojiri A, Ge D. Effects of ozonation sludge reduction on nutrient removal and microbial community diversity of conventional A 2/O and reversed A 2/O processes. ENVIRONMENTAL TECHNOLOGY 2025:1-15. [PMID: 40404595 DOI: 10.1080/09593330.2025.2506022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/08/2025] [Indexed: 05/24/2025]
Abstract
To optimise ozonation sludge reduction in the activated sludge process, it is crucial to monitor nutrient removal and pay particular attention to the influential biological species. This study employed high-throughput sequencing to examine the microbial composition and diversity in the anaerobic-anoxic-oxic (A2/O) process, the A2/O process with ozonation, and the reversed A2/O process with ozonation. The diversity analysis aimed to identify discrepancies and similarities in microbial communities among these groups, thereby elucidating the varying biological efficiencies. Furthermore, the results from Illumina MiSeq sequencing revealed significant diversification in microbial community structures in different processes. Ozonation sludge notably inhibited certain species, including the order Bacteroidales within the class Bacteroidia, as well as the orders Rhizobiales and Rhodospirillales within the class Alphaproteobacteria. Additionally, ozonation sludge exerted a notable impact on specific orders within the class Gammaproteobacteria, including Aeromonadales, Chromatiales, and HOC36. In contrast, it stimulated the proliferation of other microbial groups, such as Lactobacillales, Clostridiales, as well as Burkholderiales and Rhodocyclales. The inhibition and promotion of ozonation sludge in conventional and reversed A2/O processes resulted in various microbial richness and diversity, which rendered the distinctive biochemical activities and wastewater treatment performances. Betaproteobacteria increased significantly, especially in the reversed A2/O process, and Betaproteobacteria played an important role in the nitrogen removal and phosphorus removal process. These findings are useful for guiding the ozonised sludge system to reduce carbon, denitrification, and phosphorus removal to meet the emission standards, and the identification and enhancement of the construction of potential key biological flora for better wastewater treatment and sludge reduction.
Collapse
Affiliation(s)
- Junkun Feng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, People's Republic of China
| | - Shiyun Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shouqiang Huang
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, People's Republic of China
| | - Yalin Yu
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, People's Republic of China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Amin Mojiri
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Dongdong Ge
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, People's Republic of China
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Hu Y, Gu Y, Tan J, Ding C, Yu X, Li Z, Lin H. Effective denitrification from landfill leachate using magnetic PVA/CMC/DE carrier immobilized microorganisms. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 194:228-237. [PMID: 39823856 DOI: 10.1016/j.wasman.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Ammonia nitrogen (NH4+-N) discharge has caused eutrophication of water bodies and harm to humans and organisms. In this work, polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (CMC), diatomite (DE), and Fe3O4 were used to prepare magnetic immobilized carriers by encapsulating microorganisms for the treatment of NH4+-N wastewater. The response surface methodology was used to explore the optimal ratio of the immobilized carriers. The obtained optimal raw material ratio was 99.10 %. The obtained carriers are spherical (4-5 mm in diameter) with a rich honeycombed pore structure. The magnetic carrier improves the ammonia oxidation activity, and the carrier achieved 99.0 % of NH4+-N and 86.7 % of total nitrogen (TN) removal rates from the simulated wastewater (NH4+-N concentration: 300 mg/L) through nitrification and denitrification under aerobic conditions. Upon applied for a 60 days' treatment of landfill leachate (NH4+-N concentration of 300 mg/L), the daily removal rates for NH4+-N and TN reached 93.7 % and 78.3 %, respectively. The analysis of the microbial community showed that the abundances of heterotrophic nitrifying-aerobic denitrifying bacteria including Enterobacter, Pseudomonas, and Bacillus increased with prolonging treatment days, which accelerated nitrification and denitrification, consequently promoting the nitrogen removal effect.
Collapse
Affiliation(s)
- Yunshuang Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yufei Gu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jiahui Tan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Chong Ding
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xinyi Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhixia Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Hongfei Lin
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| |
Collapse
|
4
|
Núñez J, Maril M, Pizarro-Castillo L, Lara C, Yeber M, Carrasco C. Electrocoagulation of landfill leachate: Transforming a hazardous residue into a source of irrigation water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122856. [PMID: 39405864 DOI: 10.1016/j.jenvman.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Electrocoagulation of landfill leachate has been widely investigated, however, only few reports include the reuse of the treated water. In this work, treated leachate is evaluated as irrigation water. The main obstacle is the high Sodium Absorption Ratio (SAR=Na+/(Ca2++Mg2+)/2. Reducing this indicator involves decreasing Na+ and increasing Mg2+ or Ca2+. Sodium concentration reduction is difficult by electrochemical methods (E0 = -2.71 V); Ca2+ increasing is not feasible as it precipitates. Hence, the use of different Al-Mg anodes was tested tending to increase Mg2+ concentration in the treated water The alloy 88%wtAl-12%wtMg was able to remove 52.9% of COD, 98.1% of turbidity, 97.9% of color, obtaining a SAR of 8.2 meq·L-1, total hardness (TH) of 64.2 meq·L-1 and a soluble sodium percentage (SSP) of 75.8 meq·L-1. This was achieved by working at a current density of 15 mA cm-2, a treatment time of 15 min and a pH 5.0. The phytotoxicity of the treated leachate was evaluated by the germination index using Lactuca Sativa L., reaching a value of 83.2%, which is considered excellent for irrigation water. During growth, 3-4 primary leaves were observed in seedings after 21 days, similar to when potable water was used. The results demonstrate that electrocoagulation is an adequate treatment technique for the reuse of landfill leachate if appropriated materials are used as anodes working in well selected operational variables.
Collapse
Affiliation(s)
- Javier Núñez
- Thin Films and Electrochemical Process Laboratory, Department of Materials Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepción, Chile; Solar Energy Research Center, SERC, Av. Tupper 2007, Santiago, Chile.
| | - Marisol Maril
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad del Bío-Bío, Av. Collao 1202, Concepción, Chile
| | - Luis Pizarro-Castillo
- Thin Films and Electrochemical Process Laboratory, Department of Materials Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepción, Chile
| | - Carolina Lara
- Thin Films and Electrochemical Process Laboratory, Department of Materials Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepción, Chile
| | - Maria Yeber
- Departament of Environmental Chemistry, Faculty of Sciences, Universidad católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción, Chile
| | - Claudia Carrasco
- Thin Films and Electrochemical Process Laboratory, Department of Materials Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepción, Chile; Solar Energy Research Center, SERC, Av. Tupper 2007, Santiago, Chile.
| |
Collapse
|
5
|
Chu Y, Wang H, Chen F, He R. Intermittent aeration mitigating carbon emission from landfills with gas-water joint regulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122347. [PMID: 39236606 DOI: 10.1016/j.jenvman.2024.122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/11/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Landfill is a significant source of atmospheric CH4 and CO2 emissions. In this study, four landfill reactor systems were constructed to investigate the effects of different ventilation methods, including continuous aeration (20 h d-1) and intermittent aeration (continuous aeration for 4 h d-1 and 2 h of aeration every 12 h, twice a day), on properties of landfilled waste and emissions of CH4 and CO2, in comparison to a traditional landfill. Compared with continuous aeration, intermittent aeration could reduce the potential global warming effect of the CH4 and CO2 emissions, especially multiple intermittent aeration. The CH4 and CO2 emissions could be predicted by the multiple linear regression model based on the contents of carbon, sulfur and/or pH during landfill stabilization. Both intermittent and continuous aeration could enhance the methane oxidation activity of landfilled waste. The aerobic methane oxidation activity of landfilled waste reached the maximums of 50.77-73.78 μg g-1 h-1 after aeration for 5 or 15 d, which was higher than the anaerobic methane oxidation activity (0.45-1.27 μg g-1 h-1). CO2 was the predominant form of organic carbon loss in the bioreactor landfills. Candidatus Methylomirabilis, Methylobacter, Methylomonas and Crenothrix were the main methane-oxidating microorganisms (MOM) in the landfills. Total, NO2--N, pH and Fe3+ were the main environmental variables influencing the MOM community, among which NO2--N and pH had the significant impact on the MOM community. Partial least squares path modelling indicated that aeration modes mainly influenced the emissions of CH4 and CO2 by affecting the degradation of landfilled waste, environmental variables and microbial activities. The results would be helpful for designing aeration systems to reduce the emissions of CH4 and CO2, and the cost during landfill stabilization.
Collapse
Affiliation(s)
- Yixuan Chu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou, 310023, China
| | - Hua Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou, 310023, China
| | - Fengxian Chen
- Hangzhou Wodian Environmental Protection Technology Co., Ltd, Hangzhou, 310023, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
6
|
Tan J, Hu Y, Ding C, Li Y, Gu Y, Li Z, Lin H. Strong adsorption enhanced nitrogen removal from landfill leachate by PVA/CMC/WPU pellets immobilized microorganisms. JOURNAL OF WATER PROCESS ENGINEERING 2024; 63:105480. [DOI: 10.1016/j.jwpe.2024.105480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Santos JF, del Rocío Silva-Calpa L, de Souza FG, Pal K. Central Countries' and Brazil's Contributions to Nanotechnology. CURRENT NANOMATERIALS 2024; 9:109-147. [DOI: 10.2174/2405461508666230525124138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 03/14/2023] [Indexed: 01/05/2025]
Abstract
Abstract:
Nanotechnology is a cornerstone of the scientific advances witnessed over the past few
years. Nanotechnology applications are extensively broad, and an overview of the main trends
worldwide can give an insight into the most researched areas and gaps to be covered. This document
presents an overview of the trend topics of the three leading countries studying in this area, as
well as Brazil for comparison. The data mining was made from the Scopus database and analyzed
using the VOSviewer and Voyant Tools software. More than 44.000 indexed articles published
from 2010 to 2020 revealed that the countries responsible for the highest number of published articles
are The United States, China, and India, while Brazil is in the fifteenth position. Thematic
global networks revealed that the standing-out research topics are health science, energy,
wastewater treatment, and electronics. In a temporal observation, the primary topics of research are:
India (2020), which was devoted to facing SARS-COV 2; Brazil (2019), which is developing promising
strategies to combat cancer; China (2018), whit research on nanomedicine and triboelectric
nanogenerators; the United States (2017) and the Global tendencies (2018) are also related to the
development of triboelectric nanogenerators. The collected data are available on GitHub. This study
demonstrates the innovative use of data-mining technologies to gain a comprehensive understanding
of nanotechnology's contributions and trends and highlights the diverse priorities of nations in
this cutting-edge field.
Collapse
Affiliation(s)
- Jonas Farias Santos
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leydi del Rocío Silva-Calpa
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Gomes de Souza
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Macromoléculas Professora Eloisa Mano, Centro de
Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kaushik Pal
- University Center
for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana - Chandigarh State
Hwy, Mohali, Gharuan, 140413 Punjab, India
| |
Collapse
|
8
|
Chen N, Zhang XJ, Wei DH, Ma YP, Liu N, Ma BB, Zhang H, Yang HJ. Effect of sulfide on the nitrogen removal performance and microbial community of low-substrate Anammox process. ENVIRONMENTAL TECHNOLOGY 2024; 45:2427-2437. [PMID: 36705331 DOI: 10.1080/09593330.2023.2174048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Anammox is one of the most innovative nitrogen removal technologies, while its functional bacteria-anaerobic ammonia-oxidizing bacteria (AAOB) is sensitive to the impurities in the wastewater. In this study, the long-term effects of sulfide at different concentrations (0, 5, 10, 20, 30, 50, 25 mg L-1) on low substrate Anammox process were studied. The results showed that when the sulfide was 25-30 mg L-1, AAOB was well coupled with sulfide-denitrifying bacteria and the total nitrogen removal efficiency (TNRE) reached a maximum of 91.0%. The hydroxylamine oxidoreductase activity and Heme-c reached 1.678 EU g-1 SS and 0.0023 mmol g-1 SS, respectively, with the hzo and nosZ gene concentrations as 2.52 × 108 and 4.45 × 107 copies mL-1. 50 mg L-1 sulfide inhibited the nitrogen removal by AAOB, resulting in the TNRE decreasing to 81.7%. The experimental results provide a reference for the practical application of Anammox in treating sulfur-containing wastewater.
Collapse
Affiliation(s)
- Na Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Xiao-Jing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Deng-Hui Wei
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Yong-Peng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Nan Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Bing-Bing Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Han Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Hao-Jie Yang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| |
Collapse
|
9
|
Farsad S, Ben Hamou A, Chaoui A, Amjlef A, Lhanafi S, Et-Taleb S, El Alem N. Maximizing bio-methane potential from municipal landfill leachate through ultrasonic pretreatment. Heliyon 2023; 9:e21347. [PMID: 37908711 PMCID: PMC10613918 DOI: 10.1016/j.heliyon.2023.e21347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
In the quest for sustainable waste management solutions, this study explores the integration of ultrasonic pretreatment as a preparatory step for the anaerobic digestion of landfill leachate. Employing response surface methodology (RSM) coupled with central composite design (CCD), we systematically optimize the process parameters, including pH, inoculum volume, and ultrasonic pretreatment duration, to maximize the yield of bio-methane potential (ml CH4/g VS). The results demonstrate the effective application of RSM-CCD for predicting and modelling methane generation, with a highly significant model (R2 = 0.899). The optimized conditions reveal a remarkable biomethane potential of 177 ml CH4/g VS. Additionally, this study contributes to the understanding of the positive effect of ultrasound pretreatment on the anaerobic digestion of landfill leachate, and the quality of the digestate obtained after anaerobic digestion was studied and different valorisations were proposed.
Collapse
Affiliation(s)
- Salaheddine Farsad
- Laboratory of Materials and Environment, Ibn Zohr University, Agadir, 80000, Morocco
| | - Aboubakr Ben Hamou
- Laboratory of Materials and Environment, Ibn Zohr University, Agadir, 80000, Morocco
| | - Ayoub Chaoui
- Laboratory of Materials and Environment, Ibn Zohr University, Agadir, 80000, Morocco
| | - Asma Amjlef
- Laboratory of Materials and Environment, Ibn Zohr University, Agadir, 80000, Morocco
| | - Saaida Lhanafi
- Laboratory of Materials and Environment, Ibn Zohr University, Agadir, 80000, Morocco
| | - Said Et-Taleb
- Laboratory of Materials and Environment, Ibn Zohr University, Agadir, 80000, Morocco
| | - Noureddine El Alem
- Laboratory of Materials and Environment, Ibn Zohr University, Agadir, 80000, Morocco
| |
Collapse
|
10
|
Su Q, Dai D, Liao Y, Han H, Wu J, Ren Z. Synthetic microbial consortia to enhance the biodegradation of compost odor by biotrickling filter. BIORESOURCE TECHNOLOGY 2023; 387:129698. [PMID: 37598805 DOI: 10.1016/j.biortech.2023.129698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Composting generates odorous gases, including ammonia (NH3), hydrogen sulfide (H2S), and volatile organic compounds (VOCs). The Biological Trickling Filter (BTF) is effective for odor treatment, but it may have limitations with hydrophobic VOCs. In this study, a strain of Bacillus subtilis with ammonia-reducing ability, a strain of Bacillus cereus with desulfurization ability and a strain of Schizophyllum commune with the ability to degrade dimethyl disulfide were isolated and screened. The three strains were combined to create synthetic microbial consortia for enhancing odor treatment in the BTF. Compared to the activated sludge control, the BTF with synthetic microbial consortia removed 92.43% ammonia, 92.75% hydrogen sulfide. Furthermore, it demonstrated a significant improvement in the removal rates of p-methyl mercaptan, methyl sulfide, and dimethyl disulfide. High-throughput sequencing was conducted on the fillers of the synthetic microbial consortia-inoculated BTF to analyze the microbial community composition.
Collapse
Affiliation(s)
- Qihang Su
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dunwu Dai
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youjun Liao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Han
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
11
|
Song Z, Liao R, Zhang X, Su X, Wang M, Zeng H, Dong W, Sun F. Simultaneous methanogenesis and denitrification in an anaerobic moving bed biofilm reactor for landfill leachate treatment: Ameliorative effect of rhamnolipids. WATER RESEARCH 2023; 245:120646. [PMID: 37748343 DOI: 10.1016/j.watres.2023.120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/13/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
In this study, an anaerobic moving bed biofilm reactor (AnMBBR) was developed for simultaneous methanogenesis and denitrification (SMD) to treat high-strength landfill leachate for the first time. A novel strategy using biosurfactant to ameliorate the inhibition of landfill leachate on the SMD performance was proposed and the underlying mechanisms were explored comprehensively. With the help of rhamnolipids, the chemical oxygen demand (COD) removal efficiency of landfill leachate was improved from 86.0% ± 2.9% to 97.5% ± 1.6%, while methane yields increased from 50.1 mL/g-COD to 69.6 mL/g-COD, and the removal efficiency of NO3--N was also slightly increased from 92.5% ± 1.9% to 95.6% ± 1.0%. The addition of rhamnolipids increased the number of live cells and enhanced the secretion of extracellular polymeric substances (EPS) and key enzyme activity, indicating that the inhibitory effect was significantly ameliorated. Methanogenic and denitrifying bacteria were enhanced by 1.6 and 1.1 times, respectively. Analysis of the microbial metabolic pathways demonstrated that landfill leachate inhibited the expression of genes involved in methanogenesis and denitrification, and that their relative abundance could be upregulated with the assistance of rhamnolipids addition. Moreover, extended Deraguin - Landau - Verwery - Oxerbeek (XDLVO) theory analysis indicated that rhamnolipids reduced the repulsive interaction between biofilms and pollutants with a 57.0% decrease in the energy barrier, and thus accelerated the adsorption and uptake of pollutants onto biofilm biomass. This finding provides a low-carbon biological treatment protocol for landfill leachate and a reliable and effective strategy for its sustainable application.
Collapse
Affiliation(s)
- Zi Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Runfeng Liao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiaoli Su
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mingming Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haojie Zeng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenyi Dong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Zhang J, Liu J, Gao B, Sillanpää M, Han J. The efficiency and mechanism of excess sludge-based biochar catalyst in catalytic ozonation of landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132118. [PMID: 37494792 DOI: 10.1016/j.jhazmat.2023.132118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
In this study, biochar was produced based on dehydrated excess sludge from the municipal wastewater treatment plant, which was used for catalytic ozonation of pollutants derived from landfill leachate. The necessary catalytic sites in the structure of biochar were originated from the inorganic metals and organic matters in the sludge, which included a large number of functional groups (e.g., C-C, CO, etc.), adsorbed oxygen (Oads accounted for 44.82%) and electron defects (ID/IG=1.01). These active sites could promote the generation of reactive oxygen species (ROS) (e.g., ·OH,·O2-, etc.). The synergistic interaction between the microorganisms in the activated sludge also facilitated the removal rates of pollutants. Proteobacteria, Bacteroidetes, and Deinococcu-Thermus were crucial in the bioreactor. In 16 days of reaction, the removal ratios of NH+4-N and COD were 98.95 ± 0.11% and 90.89 ± 0.47%, respectively. This study not only explains the mechanism of catalytic ozonation of biochar, but also provides a new way of the practical treatment of landfill leachate.
Collapse
Affiliation(s)
- Jingyao Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiadong Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Bo Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Jin Han
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
13
|
Li X, Yuan Y, Dang P, Li BL, Huang Y, Li W, Zhang M, Shi M, Shen Z, Xie L. Effect of salinity stress on nitrogen and sulfur removal performance of short-cut sulfur autotrophic denitrification and anammox coupling system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162982. [PMID: 36958564 DOI: 10.1016/j.scitotenv.2023.162982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
The effects of salinity on anaerobic nitrogen and sulfide removal were investigated in a coupled anammox and short-cut sulfur autotrophic denitrification (SSADN) system. The results revealed that salinity had significant nonlinear effects on the nitrogen and sulfur transformations in the coupled system. When the salinity was <2 %, the anammox and SSADN activities increased with increasing salinity, and the total nitrogen removal rate, S0 production rate, and nitrite production rate were 0.41 kg/(m3·d), 0.37 kg/(m3·d), and 0.28 kg/(m3·d), respectively. With continuous increase of salinity, the performances of the anammox and SSADN gradually decreased, and the three indicators decreased to 0.14 kg/(m3·d), 0.22 kg/(m3·d), and 0.14 kg/(m3·d) at 5 % salinity, respectively. When the salinity reached 5 %, the nitrogen removal contribution of anammox decreased to 68.4 %, while the contribution of the sulfur autotrophic denitrification increased to 31.6 %. The coupled system recovered in a short time after alleviation of the salinity stress, and the SSADN activity recovery was faster than anammox. The microbial community structure and functional microbial abundance in the coupled system changed significantly with increasing salinity, and the functional microbial abundance after recovery was considerably different from the initial state.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Pengze Dang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bo-Lin Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mao Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miao Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ziqi Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Linyan Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|